Is a LSTM parameter to sequence regression possible?

1 visualización (últimos 30 días)
Linus Taenzer
Linus Taenzer el 18 de Jun. de 2020
Respondida: Divya Gaddipati el 23 de Jun. de 2020
Hello,
What happens if I have for example 30 different input parameters in a dataset and a corresponding signal as output and I want to predict this signal?
E.g. features are [X1, X2, X3, .... X30] and the label is a time dependent signal of length n [X31(t_1) X(31(t_2) X(31(t_3) .... X31(t_n)]
layers = [ ...
fullyConnectedLayer(30)
lstmLayer(numHiddenUnits,'OutputMode','sequence')
fullyConnectedLayer(n)
regressionLayer];
This did not work for me so far as I think there is a problem with the input layer?
Can someone help?

Respuestas (1)

Divya Gaddipati
Divya Gaddipati el 23 de Jun. de 2020
For a sequence input, you can use sequenceInputLayer.
sequenceInputLayer(featureDimension)
For more informatiom on sequenceInputLayer, refer to the following link:
Here's an example on Sequence-to-Sequence regression:

Categorías

Más información sobre Sequence and Numeric Feature Data Workflows en Help Center y File Exchange.

Productos


Versión

R2020a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by