How to combine 2 Fits done with cftool

7 visualizaciones (últimos 30 días)
Niklas Kurz
Niklas Kurz el 24 de Jun. de 2020
Comentada: Niklas Kurz el 26 de Jun. de 2020
I know right there's kind of an article in matlab concering this topic, but I don't grasp it. So here again, I set up 2 fits and "generated code" so there are 2 .m files with the fit including. How do I combine them? I tried to create 2 fits in the toolbox and generated code afterwards, but it still plots 2 seperate plots. Would be great if you could help me out.
  3 comentarios
Niklas Kurz
Niklas Kurz el 25 de Jun. de 2020
Editada: Niklas Kurz el 25 de Jun. de 2020
alright, the fits are actually almost the same, just applied to different x- and y-values:
The first one goes like:
%% Fit: 'untitled fit 1'.
[xData, tmp] = prepareCurveData( Fqr, Prem );
yData = tmp+pi/2;
% Set up fittype and options.
ft = fittype( 'a*atan(2*b*t/3.83^2-t^2)+pi/2', 'independent', 't', 'dependent', 'y' );
opts = fitoptions( 'Method', 'NonlinearLeastSquares' );
opts.Display = 'Off';
opts.StartPoint = [0.0496544303257421 0.902716109915281];
% Fit model to data.
[fitresult, gof] = fit( xData, yData, ft, opts );
% Plot fit with data.
figure( 'Name', 'untitled fit 1' );
h = plot( fitresult, xData, yData,'x');
set(h,'LineWidth',2,'Markersize',7.5)
legend( h, 'Prem vs. Fqr', 'untitled fit 1', 'Location', 'NorthEast', 'Interpreter', 'none' );
% Label axes
xlabel( 'Fqr', 'Interpreter', 'none' );
ylabel( 'Prem', 'Interpreter', 'none' );
grid on
legend({'Phasenverschiebung','Fit: $(-1,02 \pm 0,07) \cdot \tan^{-1}(\frac{2\cdot (27,59 \pm 0,27)\cdot \omega}{3,83^2-\omega^2})$'},'Interpreter','latex','FontSize',14)
xlabel({'$\omega$ in rad'},'Interpreter','latex','FontSize',14)
ylabel({'Phasenverschiebung $\Delta \varphi$ in rad'},'Interpreter','latex','FontSize',14)
and the second one:
%% Fit: 'untitled fit 1'.
[xData, tmp] = prepareCurveData( Fq2r, Prem2 );
yData = tmp+pi/2;
% Set up fittype and options.
ft = fittype( 'a*atan(2*b*t/3.82^2-t^2)+pi/2', 'independent', 't', 'dependent', 'y' );
opts = fitoptions( 'Method', 'NonlinearLeastSquares' );
opts.Display = 'Off';
opts.StartPoint = [0.425259320214135 0.312718886820616];
% Fit model to data.
[fitresult, gof] = fit( xData, yData, ft, opts );
% Plot fit with data.
figure( 'Name', 'untitled fit 1' );
h = plot( fitresult, xData, yData );
set(h,'LineWidth',2,'Markersize',7.5)
legend( h, 'Prem2 vs. Fq2r', 'untitled fit 1', 'Location', 'NorthEast', 'Interpreter', 'none' );
% Label axes
xlabel( 'Fq2r', 'Interpreter', 'none' );
ylabel( 'Prem2', 'Interpreter', 'none' );
grid on
legend({'Phasenverschiebung bei $I = 0,25 A$','Fit: $(-1,26 \pm 0,20) \cdot \tan^{-1}(\frac{2\cdot (26,59 \pm 0,65)\cdot \omega}{3,83^2-\omega^2})$'},'Interpreter','latex','FontSize',14)
xlabel({'$\omega$ in rad'},'Interpreter','latex','FontSize',14)
ylabel({'Phasenverschiebung $\Delta \varphi$ in rad'},'Interpreter','latex','FontSize',14)
dpb
dpb el 25 de Jun. de 2020
Basically, just string the two together -- you'll have to create a second set of graphics handle variables for the two to keep from overwriting the previous for h and the legend strings merged to a single call at the end.
Also call hold on to add the second to the first axis and remove the duplicated label call...

Iniciar sesión para comentar.

Respuesta aceptada

dpb
dpb el 25 de Jun. de 2020
Editada: dpb el 25 de Jun. de 2020
%% Fit: 'untitled fit 1'.
[xData1, tmp] = prepareCurveData( Fqr, Prem );
yData1 = tmp+pi/2;
% Set up fittype and options.
% Type is same for both so only need one object initially
ft = fittype( 'a*atan(2*b*t/3.83^2-t^2)+pi/2', 'independent', 't', 'dependent', 'y' );
opts = fitoptions( 'Method', 'NonlinearLeastSquares' );
opts.Display = 'Off';
% Will change the start point between two -- may or may not matter...
opts.StartPoint = [0.0496544303257421 0.902716109915281];
% Fit model to data.
% Make a first variable set unique
[fitresult1, gof1] = fit( xData, yData, ft, opts );
% Plot fit with data.
%figure( 'Name', 'untitled fit 1' ); % let default handle it...
h(1) = plot( fitresult1, xData1, yData1,'x');
% NOW DATA FOR SECOND
[xData2, tmp] = prepareCurveData( Fq2r, Prem2 );
yData2 = tmp+pi/2;
% and the other start points, fit...
opts.StartPoint = [0.425259320214135 0.312718886820616];
[fitresult2, gof2] = fit( xData2, yData2, ft, opts );
hold on % add to existing plot
h(2) = plot( fitresult2, xData2, yData2 );
% set both line handles in h array...
set(h,'LineWidth',2,'Markersize',7.5)
grid on
legend({'Phasenverschiebung','Fit: $(-1,02 \pm 0,07) \cdot \tan^{-1}(\frac{2\cdot (27,59 \pm 0,27)\cdot \omega}{3,83^2-\omega^2})$'}, ...
{'Phasenverschiebung bei $I = 0,25 A$','Fit: $(-1,26 \pm 0,20) \cdot \tan^{-1}(\frac{2\cdot (26,59 \pm 0,65)\cdot \omega}{3,83^2-\omega^2})$'}, ...
'Interpreter','latex','FontSize',14)
xlabel({'$\omega$ in rad'},'Interpreter','latex','FontSize',14)
ylabel({'Phasenverschiebung $\Delta \varphi$ in rad'},'Interpreter','latex','FontSize',14)
is a first cut
  3 comentarios
dpb
dpb el 25 de Jun. de 2020
Different size won't matter...all I see is missed adding the '1' to end of X|YData in first call to fit()...
h(1) = plot( fitresult1, xData1, yData1,'x');
should fix that.
You'll just have to step through and debug...all it's doing is calling fit twice with the two data sets after the preparatory work is done.
The other way to approach it is to take one of the original copies, turn it from a script into a function using generic data arguments and then call that function with the two data sets in turn. Then you could rearrange to return the fit results and plot them together instead of asking the fitting routine to also do the plotting...or not, your choice.
Niklas Kurz
Niklas Kurz el 26 de Jun. de 2020
yea, u're totally right, plotting data and adding fit curve with parameters of cftool is just more effective then this tangled string. Sometimes my view is just restricted. Thank you so much for leading me through!

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Linear and Nonlinear Regression en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by