spectral solution to 1D KdV equation

11 visualizaciones (últimos 30 días)
Lama Hamadeh
Lama Hamadeh el 1 de Jul. de 2020
Comentada: Syed Abid Sahdman el 23 de En. de 2024
I am trying to solve the solution of a 1D KdV equation (ut+uux+uxxx=0) starting from a two solitons initial condition using Fourier spectral method. My code blows up the solution for a reason that I cannot figure out (probably due to a high order numerical stiffness!). I would appreciate any help. This is my main code file:
%Spatial variable on x direction
L=4; %domain on x
delta=0.05; %spatial step size
xmin=-L; %minimum boundary
xmax=L; %maximum boundary
N=(xmax-xmin)/delta; %number of spatial points
x=linspace(xmin,xmax,N); %spatial vector
%--------------------------
%IC
sigma1 = 2; sigma2 = 4;
c1 = 2; c2 = 1;
h1 = 1; h2 = 0.3;
U = 0.*x;
U = h1*sech(sigma2*(x+c1)).^2+h2*sech(sigma1*(x-c2)).^2;
% %plotting
% figure(1)
% plot(x,U,'b','LineWidth',2);
% xlabel('$x$','Interpreter','latex')
% ylabel('$U(x,t=0)$','Interpreter','latex')
% xlim([-L-2 L+2])
% ylim([-0.5 1.2])
% set(gca,'TickLabelInterpreter','latex')
% title('Initial State')
% set(gca,'FontSize',16)
% drawnow;
%Fast Fourier Transform to the initial condition
Ut = fftshift(fft(U));
Ut = reshape(Ut,N,1);
%--------------------------
%1D Wave vector disretisation
k = (2*pi/L)*[0:(N/2-1) (-N/2):-1];
k(1) = 10^(-6);
k = fftshift(k);
k = reshape(k,N,1);
%first derivative (advection)
duhat = 1i .*k .*Ut;
du = real(ifft(ifftshift(duhat))); %inverse of FT
%third derivative (diffusion)
ddduhat = -1i .* (k.^3) .*Ut;
dddu = real(ifft(ifftshift(ddduhat))); %inverse of FT
%--------------------------
%Time variable
dt = 0.01; %time step
tmin = 0;
tmax = 4;
tspan = [tmin tmax];
%--------------------------
%solve
Time = 100;
for TimeIteration = 1:2:Time
t= TimeIteration * dt;
%solve
[Time,Sol] = ode113('FFT_rhs_1D',tspan,U,[],du,dddu);
Sol = Sol(TimeIteration,:);
%plotting
figure(2)
plot(x,abs(Sol),'b','LineWidth',2);
xlabel('$x$','Interpreter','latex')
ylabel('$|{U(x,t)|}$','Interpreter','latex')
xlim([-L-2 L+2])
ylim([-0.5 1.2])
set(gca,'TickLabelInterpreter','latex')
set(gca,'FontSize',16)
txt = {['t = ' num2str(t)]};
text(1,1,txt,'FontSize',16)
axis square
drawnow
end
%--------------------------
And my function file is the follwoing:
function rhs = FFT_rhs_1D(tspan,U,dummy,du,dddu)
%define diffusion/advection coeffieicnts
diffusion = 1;
advection = 1;
%solve the right hand side
rhs = - advection .* U .* du - diffusion .* dddu;
end
Any help will be appreicated.
Thanks.
Lama

Respuestas (0)

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by