Vectorization of while loop

12 visualizaciones (últimos 30 días)
elchico
elchico el 15 de Jul. de 2020
Comentada: elchico el 3 de Oct. de 2020
Hi all,
I have a small function, which generates random numbers in a specific interval. The function tests the generated values in respect to a certain bound and recalculates the random numbers again, if the bound is violated. I have to call this function several times (in this case 60 000 times), so this takes a lot of time (3/4 of the total time). I have read about vectorizing the code to improve performance. But I am totally helpless with this task. Your help would be greatly appreciated.
However, if someone has an idea to rewrite the while loop in a different way that would be great, as well.
Michi
Code:
meanValue = 10;
devValue = 1;
numValues = 10000;
presumption = 1;
for i = 1:60000
arrayValues = RandomNums(meanValue, devValue, numValues, presumption);
end
function arrayValues = RandomNums (meanValue, devValue, numValues, presumption)
%% create rand nums
% normally distributed with meanValue +/- devValue
numValues = round(numValues);
arrayValues = devValue*randn(numValues,1) + meanValue;
% check confidence-limes for each value and create new one if outside
for idx = 1:numel(arrayValues)
while (arrayValues(idx) > (meanValue + presumption*devValue) || arrayValues(idx) < (meanValue - presumption*devValue))
arrayValues(idx) = devValue*randn(1,1,'double') + meanValue;
end
end
end
Performance:
  2 comentarios
Bruno Luong
Bruno Luong el 15 de Jul. de 2020
You should look for "truncated gaussian" distribution, and posts how to generate them.
elchico
elchico el 15 de Jul. de 2020
Hi Bruno,
thank you for your reply. I've tried that, but as far as I understand, it does not make it better. Maybe, I have missed /missunderstood something?
Thanks again!
Code with Comparison:
meanValue = 10;
devValue = 1;
numValues = 10000;
presumption = 1;
for i = 1:10
arrayValues = RandomNums(meanValue, devValue, numValues, presumption);
a = ["arrayValues1",num2str(i)];
disp(a)
pause(0.00001);
end
for ii = 1:10
arrayValues2 = RandomNums2(meanValue, devValue, numValues, presumption);
a = ["arrayValues2",num2str(ii)];
disp(a)
pause(0.00001);
end
function arrayValues = RandomNums (meanValue, devValue, numValues, presumption)
%% create rand nums
% normally distributed with meanValue +/- devValue
numValues = round(numValues);
arrayValues = devValue*randn(numValues,1) + meanValue;
% check confidence-limes for each value and create new one if outside
for idx = 1:numel(arrayValues)
while (arrayValues(idx) > (meanValue + presumption*devValue) || arrayValues(idx) < (meanValue - presumption*devValue))
arrayValues(idx) = devValue*randn(1,1,'double') + meanValue;
end
end
end
function arrayValues2 = RandomNums2 (meanValue, devValue, numValues, presumption)
%% create rand nums
% normally distributed with meanValue +/- devValue
numValues = round(numValues);
pd = makedist('Normal','mu',meanValue,'sigma',devValue);
confidence = presumption*devValue;
t = truncate(pd,meanValue - confidence,meanValue + confidence);
arrayValues2 = random(t,numValues);
end
Performance:

Iniciar sesión para comentar.

Respuesta aceptada

Bruno Luong
Bruno Luong el 16 de Jul. de 2020
meanValue = 10;
devValue = 1;
numValues = 1000000;
presumption = 2;
tic
% Function from here https://www.mathworks.com/matlabcentral/fileexchange/23832-truncated-gaussian
arrayValues = meanValue + TruncatedGaussian(-devValue, presumption*[-1 1], [1 numValues]);
toc % Elapsed time is 0.055511 seconds for one billions random numbers.
% Check histogram
hist(arrayValues,100)
Histogram obtained
  3 comentarios
Bruno Luong
Bruno Luong el 3 de Oct. de 2020
It mainly because it uses different method (non rejection) and inverse error function.
elchico
elchico el 3 de Oct. de 2020
Ok, thank you

Iniciar sesión para comentar.

Más respuestas (1)

elchico
elchico el 2 de Oct. de 2020
Hi Bruno,
one more question to your code: Do you have something similar with Poisson Distribution etc.?
Thanks.
  2 comentarios
Bruno Luong
Bruno Luong el 2 de Oct. de 2020
Unfortunately no.
elchico
elchico el 3 de Oct. de 2020
okay, that is sad for me but: thanks anyways ;-)
May I ask you what is the difference in performance between your code (so fast!) compared to my initial Gauss code? I have to explain this and I am not totally sure about it ...

Iniciar sesión para comentar.

Categorías

Más información sobre Linear Algebra en Help Center y File Exchange.

Productos


Versión

R2019b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by