Borrar filtros
Borrar filtros

K-th order neighbors in graph

6 visualizaciones (últimos 30 días)
Rub Ron
Rub Ron el 24 de Jul. de 2020
Editada: Bruno Luong el 31 de Jul. de 2020
I would like to do this, but in Matlab with a graph (it is not a directed graph): https://stackoverflow.com/questions/18393842/k-th-order-neighbors-in-graph-python-networkx
I have a graph in which I want to efficiently find a list of all K-th order neighbors of a node (j). K-th order neighbors are defined as all nodes which can be reached from the node in question in exactly K hops.
For example,
s = [1 1 1 1 2 2 2 2 2 8 8 12 6];
t = [3 5 4 2 6 10 7 9 8 11 12 13 7];
G = graph(s,t);
plot(G)
If j=1, I want to get :
for k=1
[2 3 4 5]
for k=2
[6 7 8 9 10]
for k=3
[11 12]
k=4
[13]
k=5
empthy

Respuesta aceptada

Matt J
Matt J el 24 de Jul. de 2020
Editada: Matt J el 25 de Jul. de 2020
function result=distk(G,i,k)
% G -graph
% i - start node
% k - number of steps
A=adjacency(G);
v=A(i,:);
prior=false(size(v)); prior(i)=true;
for n=1:k-1
prior=prior|v;
v=v*A;
end
result = find(v&~prior);
end
  15 comentarios
Bruno Luong
Bruno Luong el 29 de Jul. de 2020
Editada: Bruno Luong el 29 de Jul. de 2020
"A drawback of Bruno's approach that I see is that its use of distances() will compute all distances, even those greater than the particular k of interest."
I just did some benchmark, and Matlab graph distances seems to be pretty fast and beat all even for small k and large n. Let alone the case where k is large.
If that is matter at all.
Bruno Luong
Bruno Luong el 29 de Jul. de 2020
Editada: Bruno Luong el 31 de Jul. de 2020
Here is my benchmark code, feel free to play with it.
function BenchGNeighbor
start = 1; % starting node
% Graph corresponds to the 2D square grid of size 1000 x 1000
[X,Y] = ndgrid(1:1000);
n = numel(X);
I = sub2ind(size(X),X(1:end-1,:),Y(1:end-1,:));
J = I+1;
A = sparse(I,J,1,n,n);
I = sub2ind(size(X),X(:,1:end-1),Y(:,1:end-1));
J = I+size(X,1);
A = A + sparse(I,J,1,n,n);
A = A + A';
G = graph(A);
k = 100; %size(X,1);
% clean memory
clear X Y I J
k = min(k,size(A,1));
%% Matlab graph distances method
tic
d = distances(G, start);
rMatlab = find(d==k);
tMatlab = toc;
%% Bruno's algorithm
tic
n = size(A,1);
% initialize distance matrix
notdone = true(n,1);
i = start;
for q=1:k
notdone(i) = false;
[i,~] = find(A(:,i));
if isempty(i)
break
end
i = unique(i);
i = i(notdone(i));
end
rBruno = reshape(i,1,[]);
tBruno = toc;
%% Matt method
tic
i = start; % start node
v = A(i,:);
prior = false(size(v));
prior(i) = true;
for j=1:k-1
prior = prior|v;
v = v*A;
end
rMatt = find(v & ~prior);
tMatt = toc;
% Check matching results
if ~isequal(rBruno, rMatlab) || ~isequal(rMatt, rMatlab)
fprintf('Bug detected!!!\n');
end
fprintf('Timings for 2D-grid graph with number of nodes = %d, k=%d\n', n, k);
fprintf('\ttMatlab = %f [second]\n', tMatlab);
fprintf('\ttBruno = %f [second]\n', tBruno);
fprintf('\ttMatt = %f [second]\n', tMatt);

Iniciar sesión para comentar.

Más respuestas (3)

Bruno Luong
Bruno Luong el 25 de Jul. de 2020
Editada: Bruno Luong el 28 de Jul. de 2020
It sounds like you look at graph-distance and NOT what you described "K-th order neighbors are defined as all nodes which can be reached from the node in question in exactly K hops." The later problem is solved by my other answer.
If it is is the first case (graph distance) one can do by shortest path algorithms such as Bellman-Ford (BF) algorithm.
Graph example (yours):
s = [1 1 1 1 2 2 2 2 2 8 8 12 14 14 1 14];
t = [3 5 4 2 6 10 7 9 8 11 12 13 7 6 8 15];
G = graph(s,t);
plot(G)
BF algo (note: the bellow is not optimal implemented, since using full matrix with Inf).
start = 1; % starting node
B = adjacency(G);
B = full(B);
B(B==0) = Inf;
n = size(B,1);
d = inf(n,1);
d(start) = 0;
while any(isinf(d)) % careful graph must be connected, otherwise loop forever
d = min(d,min(d+B,[],1).');
end
Or simply using MATLAB stock function
d = distances(G,start);
% neighhbor for any specific k, e.g. k=2; neightbors i are
% i = find(d==k)
Display result
n = size(G.Nodes,1);
nodes = setdiff(1:n,start)';
d = d(:);
dcell = accumarray(d(nodes), nodes, [], @(x) {x.'});
K = (1:length(dcell))';
for k=1:length(dcell)
i = dcell{k};
fprintf('k = %d: i = %s\n', k, mat2str(i));
end
Result
k = 1: i = [2 3 4 5 8]
k = 2: i = [6 7 9 10 11 12]
k = 3: i = [13 14]
k = 4: i = 15
  1 comentario
Bruno Luong
Bruno Luong el 28 de Jul. de 2020
Editada: Bruno Luong el 30 de Jul. de 2020
In the above I code Bellman-Ford algorithm like this single-line while loop for illustration purpose:
% ...
% Initialization of d and B
while any(isinf(d)) % careful graph must be connected, otherwise loop forever
d = min(d,min(d+B,[],1).');
end
A better implementation of Bellman-Ford algorithm that exploits the sparsity of ajadcent matrix to compute the shortest distance is
start = 1; % starting node
A = adjacency(G); % eventually with non-unit and non-negative weight
n = size(A,1);
% initialize distance matrix
d = inf(n,1);
du = 0;
i = start;
while true
d(i) = du;
[i,j,dij] = find(A(:,i));
if isempty(i)
break
end
[du, p] = sort(du(j)+dij);
[i, p] = sort(i(p)); % here we requires stable sorting, which is the case with MATLAB
b = [true; diff(i,1,1)>0];
i = i(b);
du = du(p(b));
b = du < d(i);
i = i(b);
du = du(b);
end
% Exit the while-loop d contains distance vector from start-node to all nodes

Iniciar sesión para comentar.


Bruno Luong
Bruno Luong el 24 de Jul. de 2020
Editada: Bruno Luong el 24 de Jul. de 2020
Assuming A is the transposed of the adjacent matrix (n x n).
j in (1:n) is the source node number.
This method should be faster than computing A^k proposed by Matt
x = zeros(n,1);
x(j) = 1;
for i=1:k
x = A*x;
end
i = find(x)';
fprintf('%d-neighbor of %d is %s\n', k, j, mat2str(i))
If sparse form of the adjadcent matrix is readily available, it could be preferable to use it.
  7 comentarios
Bruno Luong
Bruno Luong el 24 de Jul. de 2020
Editada: Bruno Luong el 24 de Jul. de 2020
When you allow to go from s to t, and forbid to go in the opposite direction from t to s, it's called digraph
s = [1 1 1 1 2 2 2 2 2 8 8 12];
t = [3 5 4 2 6 10 7 9 8 11 12 13];
G = digraph(s,t);
plot(G)
A = adjacency(G).';
n = size(A,1);
x = zeros(n,1);
x(1) = 1;
for k=1:5
x = A*x;
i = find(x)';
fprintf('k = %d: i = %s\n', k, mat2str(i));
end
Output match your expectation
k = 1: i = [2 3 4 5]
k = 2: i = [6 7 8 9 10]
k = 3: i = [11 12]
k = 4: i = 13
k = 5: i = zeros(1,0)
Rub Ron
Rub Ron el 24 de Jul. de 2020
You might be focusing only in the example rather than in a general case. In my case the graphs are not directed, I cannot make them "nicely" directed. For intance, by changing the example graph to this one, the outputs are not the desired ones
s = [3 5 4 2 6 10 7 9 8 11 12 13];
t = [1 1 1 1 2 2 2 2 2 8 8 12];
G = digraph(s,t);

Iniciar sesión para comentar.


Bruno Luong
Bruno Luong el 31 de Jul. de 2020
Editada: Bruno Luong el 31 de Jul. de 2020
Given A an (n x n) symmetric ajadcent matrix (undirected graph), and k the order (integer scalar), I propose this algorithm to find index of all k-neigbor of node #start
n = size(A,1);
k = min(k,n);
notdone = true(n,1);
i = start;
for q=1:k
notdone(i) = false;
[i,~] = find(A(:,i));
if isempty(i)
break
end
i = unique(i);
i = i(notdone(i));
end
neighbouridx = i; % column vector

Categorías

Más información sobre Graph and Network Algorithms en Help Center y File Exchange.

Etiquetas

Productos

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by