How to calculate mean in moving cubic volume?
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
SojM
el 25 de Jul. de 2020
Respondida: Amy Van Wey Lovatt
el 11 de Sept. de 2022
I have a stack of 2D images in 3D array format 100x100x500. Now I want to select a small cubic volume of 1x1x1 at center of the stack and increase this cubic volume step by step till I reach the array size, calculating mean at each stage. I know I need to use mat2cell and mean function. How can be done in corect for loop?
0 comentarios
Respuesta aceptada
Matt J
el 25 de Jul. de 2020
Editada: Matt J
el 25 de Jul. de 2020
I know I need to use mat2cell and mean function.
I don't think you do. Let's call your 3D volume, V:
[ci,cj,ck]=deal(51,51,251); %center coordinate ?
[I,J,K]=ndgrid(abs((1:100)-ci),abs((1:100)-cj),abs((1:500)-ck));
L=max(max(I,J),K)+1; %label matrix
stats = regionprops3(L,V,'MeanIntensity','Volume');
cumVolumes = cumsum(stats.Volume);
cumIntensities = cumsum(stats.Volume.*stats.MeanIntensity);
result = cumIntensities ./cumVolumes
6 comentarios
Matt J
el 2 de Ag. de 2020
Something like this?
clear S
S(400)=struct('cumVolumes',[],'cumIntensities',[],'result',[]); %pre-allocate
for i = 1:400
[ci,cj,ck]=deal(51,51,50+i); %center coordinate
[I,J,K]= ndgrid(abs((1:100)-ci),abs((1:100)-cj),abs((i:100+i)-ck)); % Z remain 100 but changes with center
L = max(max(I,J),K)+1; %label matrix
stats = regionprops3(L,V(:,:[i:100+i]),'MeanIntensity','Volume');
S(i).cumVolumes = cumsum(stats.Volume);
S(i).cumIntensities = cumsum(stats.Volume.*stats.MeanIntensity);
S(i).result = cumIntensities ./cumVolumes
end
Más respuestas (1)
Amy Van Wey Lovatt
el 11 de Sept. de 2022
Here is another option, which I'm using to calculate contrast uptake in breast images. I'm not sure which runs faster.
function PE = PeakEnhancement(S0,S1)
% S0 is the pre-contrast phase
% S1 is phase 1 or phase 2 of the contrast, this is an NxMxP matrix.
% sub is the initial percentage of uptake
sub=(S1-S0)./S0;
PE=zeros(size(sub));
% PeakEhnancement (PE) is the average of the 9 closest voxels in 3 x 3 x 3 cube.
% PE is a place holder ensuring size(PE)=size(S1) and boundaryies are all zerp.
for i=2:length(sub(:,1,1))-1
for j=2:length(sub(1,:,1))-1
for k=2:length(sub(1,1,:))-1
PE(i,j,k)=mean(sub(i-1:i+1,j-1:j+1,k-1:k+1),'all');
end
end
end
end
0 comentarios
Ver también
Categorías
Más información sobre 3-D Volumetric Image Processing en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!