Help !! How to use Genetic Algorithm for maximisation process as it is used for minimisation process?
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
ad aymen
el 28 de Ag. de 2020
Comentada: ad aymen
el 9 de Sept. de 2020
How to use Genetic Algorithm for maximisation process as it is used for minimisation process?
There are those who tell you other than the sign equation
but I can't change it cos it is an equation preserved by neural networks
This work improves the linear actuator so that it is sandwiched between LB and LU
I want the most value for ' y '
please help me
fitness=@fen;
nvars=2; % Number of variables
LB=[... ...]; %LB Lower bound on x
UB=[... ...]; %UB Upper bound on x
[x,y] = ga(fitness,nvars,[],[],[],[],LB,UB)
0 comentarios
Respuesta aceptada
Star Strider
el 28 de Ag. de 2020
Negate the fitness function to select for the maximum:
[x,y] = ga(@(x)-fitness(x),nvars,[],[],[],[],LB,UB)
Note that this assumes ‘fitness’ has only one argument.
If you are passing extra parameters, this works:
[x,y] = ga(@(x)-fitness(x,a,b),nvars,[],[],[],[],LB,UB)
where ‘a’ and ‘b’ (and perhaps others) are the extra parameters.
3 comentarios
Más respuestas (1)
Gifari Zulkarnaen
el 28 de Ag. de 2020
Make the fitness function to be 1/f(x) where f(x) is your original maximization.
Ver también
Categorías
Más información sobre Genetic Algorithm en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!