- Is this a homework assignment?
- Is the only requirement that the six parts have equal area? I'm wary of other assumptions you may be neglecting to mention. For example, would it be ok to just make vertical slices? Or do you need to find a single point in the interior, such that lines to the vertices separate the area equally?
How to split a polygon.
    17 visualizaciones (últimos 30 días)
  
       Mostrar comentarios más antiguos
    
    Carlos Zúñiga
 el 31 de Ag. de 2020
  
    
    
    
    
    Comentada: Bruno Luong
      
      
 el 31 de Ag. de 2020
            Hello everyone. 
If I have a polygon with the following coordinates:
x=[0 4 7 5 1];    %Polygon x-coordinates
y=[0 -2 0 10 8]; %Polygon y-coordinates
How can I split the polygon formed by the coordinates shown bellow in for example six parts which area is equal to each other? 
2 comentarios
  the cyclist
      
      
 el 31 de Ag. de 2020
				Two questions before anyone spends time thinking about this:
Respuesta aceptada
  Bruno Luong
      
      
 el 31 de Ag. de 2020
        
      Editada: Bruno Luong
      
      
 el 31 de Ag. de 2020
  
      Each slice has area of 9.5
x=[0 4 7 5 1];    %Polygon x-coordinates
y=[0 -2 0 10 8]; %Polygon y-coordinates
n = 6;
P = polyshape(x,y);
A = P.area/n;
xmin = min(x); xmax = max(x);
ymin = min(y); ymax = max(y);
x0 = xmin+0.01;
b = zeros(1,n-1);
Q = cell(1,n);
Qk = polyshape(); % empty
for k=1:n-1
    x0 = fzero(@(x) areafun(P, xmin, x, ymin, ymax)-k*A, x0);
    b(k) = x0;
    Qp = Qk;
    [s, Qk] = areafun(P, xmin, b(k) , ymin, ymax);
    Q{k} = subtract(Qk, Qp);
end
Q{n} = subtract(P, Qk);
close all;
figure
hold on
for k=1:n
    Q{k}.area
    plot(Q{k});
end
axis equal
function [s, Q] = areafun(P, xmin, xmax, ymin, ymax)
R = polyshape([xmin xmax xmax xmin],[ymin ymin ymax ymax]);
Q = intersect(P,R);
s = Q.area;
end

6 comentarios
  Bruno Luong
      
      
 el 31 de Ag. de 2020
				Star-like partitioning
x=[0 4 7 5 1];    %Polygon x-coordinates
y=[0 -2 0 10 8]; %Polygon y-coordinates
n = 6;
P = polyshape(x,y);
A = P.area/n;
xmin = min(x); xmax = max(x);
ymin = min(y); ymax = max(y);
b = zeros(1,n-1);
Q = cell(1,n);
[xc,yc] = P.centroid;
r = sqrt(max((x-xc).^2+(y-yc).^2))*1.1;
Qk = polyshape(); % empty
x0 = 2*pi/n;
for k=1:n-1
    x0 = fzero(@(tt) areafun(P, xc, yc, tt, r)-k*A, x0);
    b(k) = x0;
    Qp = Qk;
    [s, Qk] = areafun(P, xc, yc, x0, r);
    Q{k} = subtract(Qk, Qp);
end
Q{n} = subtract(P, Qk);
close all;
figure
hold on
for k=1:n
    Q{k}.area
    plot(Q{k});
end
axis equal
function [s, Q] = areafun(P, xc, yc, tt, r)
ntt = max(ceil(abs(tt)*128),2);
phi = linspace(0,tt,ntt);
Q = polyshape([xc xc+r*cos(phi)],[yc yc+r*sin(phi)]);
Q = intersect(P,Q);
s = sign(tt)*Q.area;
end

Más respuestas (0)
Ver también
Categorías
				Más información sobre Interpolation en Help Center y File Exchange.
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!


