How can i save a large structure array without performace issues?

8 visualizaciones (últimos 30 días)
Hello,
we are importing data with an .Net-dll into Matlab. The data will be saved in a structure like this.
for measure_id = 1:length(messungen)
...
for signal = 1:signal_names.Length
signal_name = signal_names(signal);
...
for RPC_Nr = 1:step.Length
for shot_idx ...
M(measure_id).ETCurve(ETC_Nr).(sprintf('%s', char(signal_name)))(shot_idx).data = DATA
end
M(measure_id).RPCurve(RPC_Nr).(sprintf('%s_t', char(signal_name))) = DATA
...
end
end
...
if measure_id < length(messungen)
save('data.mat', 'M', '-v7.3')
end
end
There are 6 different structure types for the "first level", like M(1).ETCurve, M(1).RPCurve, M(1).TP, ...
With this structure it is easy to acces the needed data like M(1).RPCurve(2).Q or M(1).ETCurve(2).U(100).data and so on.
One measurement has about 0,5 to 1,5 GB of data, when saved to a mat-file. After the 4th measurement saving and loading the workspace will take some time and after the 6th measurement it will take more than 30 minutes...
Has anyone an idea, wyh this will get so slow and can i improve the performance.
Tanks
  5 comentarios
per isakson
per isakson el 8 de Sept. de 2020
To me it looks like you overwrite the variable named M in every iteration.
If each variable value is less than 2GB version, v7, is a faster alternative than v7.3
Stefan Wakolbinger
Stefan Wakolbinger el 23 de Sept. de 2020
Thank you per isakson.
I changed the whole import stuff to the variable M. Before saving i create a variable M1, M2, M3, ... instead of overwriting the list of M(:).
This is much faster and has a linear behavior with the number of measurements.
...
M.RPCurve(RPC_Nr).(sprintf('%s_t', char(signal_name))) = DATA
...
varName = sprintf('M%d', measure_idx);
eval([varName ' = M;'])
tic
if exist(workspace, 'file') == 2
save(workspace, varName, '-append')
else
save(workspace, varName, '-v7.3')
end
toc

Iniciar sesión para comentar.

Respuesta aceptada

Stefan Wakolbinger
Stefan Wakolbinger el 23 de Sept. de 2020
I changed the whole import stuff to the variable M. Before saving i create a variable M1, M2, M3, ... and append this variable to the workspace, instead of overwriting the list of M(:).
This is much faster.
% import stuff
...
M.RPCurve(RPC_Nr).(sprintf('%s_t', char(signal_name))) = DATA
...
% save measurement
varName = sprintf('M%d', measure_idx);
eval([varName ' = M;'])
if exist(workspace, 'file') == 2
save(workspace, varName, '-append')
else
save(workspace, varName, '-v7.3')
end

Más respuestas (0)

Categorías

Más información sobre Loops and Conditional Statements en Help Center y File Exchange.

Productos


Versión

R2018b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by