Finding sigma from fit using Curve Toolbox gaussian?
30 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
I am using the gaussin fitting functions in the Matlab curve fitting toolbox, which uses the model:
ans(x) = a1*exp(-((x-b1)/c1)^2) + a2*exp(-((x-b2)/c2)^2)
This all works well for my data and I get the fits, but now I want to know what sigma is for these two gaussians? That isn't just c, is it? Can someone tells me how the fit coefficients relate to sigma?
Much appreciation.
Gary
0 comentarios
Respuestas (1)
Shashank Prasanna
el 22 de En. de 2013
Editada: Shashank Prasanna
el 22 de En. de 2013
If you look at the gaussian equation the curve fitting toolbox fits:
you will notice that it is different from the standard normal/gaussian distribution equation given here:
which means you can equate the coefficients you can equate them and get the value of sigma.
a1 = 1/sigma*sqrt(2*pi)
-1/c^2 = -1/2*sigma^2
1 comentario
Fynn Reinbacher
el 5 de Nov. de 2020
sigma = 1/(a*sqrt(2*pi));
Has to be used with caution.
This works only for normalized datasets.
In the matlab version of the gaussian:
For nomalized data
and the above answer is indeed valid
In order to get σ from a you'd need to integrate your data first
% if:
[x, cnts] = load('mydata.mat'); % data you are fitting
f1 = fit(x, cnts, 'gauss1');
% then:
mu = f1.b1;
sigma = f1.c1/sqrt(2);
% or:
intergral = trapz(x, cnts);
sigma = integral/(f.a1*sqrt(2*pi));
This has me bugged for a long time.
Ver también
Categorías
Más información sobre Get Started with Curve Fitting Toolbox en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!