Info
La pregunta está cerrada. Vuélvala a abrir para editarla o responderla.
Error in Value of 'support' parameter must have two elements.
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
Error:
Error using ksdensity>compute_finite_support (line 181)
Value of 'support' parameter must have two elements.
Code:
clear
tic
disp('--- start ---')
distr='normal';
distr='kernel';
% read data
data = importdata('LDA data.mat')%import the data
features=data(:,1:end-1); %split data without labels
lable=data(:,end);
X = features;%Take up to row 11
Y = lable;%Take row 12 which is the label
% Create a cvpartition aka cross validation
c = cvpartition(Y,'holdout',.2);
% Create a training set
x = X(training(c,1),:);
y = Y(training(c,1));
% test set
u=X(test(c,1),:);
v=Y(test(c,1),:);
yu=unique(y);%find the unique elements. The resulting vector yu is sorted in ascending order and its elements are of the same class as y.
nc=length(yu); % number of classes
ni=size(x,2); % independent variables
ns=length(v); % test set
% compute class probability
for i=1:nc
fy(i)=sum(double(y==yu(i)))/length(y);
end
switch distr
case 'normal'
% normal distribution
% parameters from training set
for i=1:nc
xi=x((y==yu(i)),:);
mu(i,:)=mean(xi,1);
sigma(i,:)=std(xi,1);
end
% probability for test set
for j=1:ns
fu=normcdf(ones(nc,1)*u(j,:),mu,sigma);
P(j,:)=fy.*prod(fu,2)';
end
case 'kernel'
% kernel distribution
% probability of test set estimated from training set
for i=1:nc
for k=1:ni
xi=x(y==yu(i),k);
ui=u(:,k);
fuStruct(i,k).f = ksdensity(xi,ui);
end
end
% re-structure
for i=1:ns
for j=1:nc
for k=1:ni
fu(j,k)=fuStruct(j,k).f(i);
end
end
P(i,:)=fy.*prod(fu,2)';
end
otherwise
disp('invalid distribution stated')
return
end
%get predicted output for test set
[pv0,id]=max(P,[],2);
for i=1:length(id)
pv(i,1)=yu(id(i));
end
% compare predicted output with actual output from test data
confMat=myconfusionmat(v,pv);
disp('confusion matrix:')
disp(confMat)
conf=sum(pv==v)/length(pv);
disp(['accuracy = ',num2str(conf*100),'%'])
toc
LDA data is a data with seven features to compare and its has a last column as labels.
Respuestas (0)
La pregunta está cerrada.
Ver también
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!