How can I write summationn constraints for an optimization problem?
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Ricardo López
el 29 de Sept. de 2020
Comentada: Matt J
el 29 de Sept. de 2020
Good morning,
I would like to optimize the following equation:
min
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/368278/image.png)
with the following contraints:
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/368281/image.png)
x>0
Where
is a known set of values,
is equal to a [288x1] vector and
is also known as a [288x1] vector.
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/368284/image.png)
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/368287/image.png)
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/368290/image.png)
How can I add those constraints? I am trying to use x=fmincon(fun,x0,A,b,Aeq,beq);
Thanks!
Respuesta aceptada
Matt J
el 29 de Sept. de 2020
Editada: Matt J
el 29 de Sept. de 2020
fmincon is not the best tool to use for a linear program. In the problem-based framework, you can set up the problem to be solved with linprog() as follows:
x=optimvar('x',size(c),'LowerBound',0);
prob=optimproblem('Objective',x.'*price);
prob.Constraints.sumx=sum(x-c)==0;
sol=solve(prob);
2 comentarios
Matt J
el 29 de Sept. de 2020
Thing is, I would like to have or understand the code behind it.
TMW will not provide the code, but there are algorithm descriptions here
It sounds like we have answered your original question, so I encourage you to Accept-click the answer. If you have spin-off questions, it would be best if you pose them in a separate thread.
Más respuestas (1)
Ameer Hamza
el 29 de Sept. de 2020
Something like this
price = rand(288, 1); % example value
c = rand(288, 1); % example value
sum_c = sum(c);
x0 = rand(288, 1); % initial guess
fmincon(@(x) price.'*x, x0, [], [], [], [], [], [], @(x) nlcon(x, sum_c)) % price.'*x is same as sum(price.*x)
function [cneq, ceq] = nlcon(x, sum_c)
cneq = [];
ceq = sum(x) - sum_c;
end
0 comentarios
Ver también
Categorías
Más información sobre Get Started with Optimization Toolbox en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!