the calculation of the eigenvector

3 visualizaciones (últimos 30 días)
jad bousaid
jad bousaid el 5 de Oct. de 2020
Editada: Bruno Luong el 6 de Oct. de 2020
B =
1.0e+06 *
0.6064 -0.4550 0.0776 -0.6532 0.4550 0.0126
-0.4550 1.6724 0.0180 0.4550 -0.3209 0.0180
0.0776 0.0180 0.3626 -0.0126 -0.0180 0.0569
-0.6532 0.4550 -0.0126 1.0029 -0.4550 0.5070
0.4550 -0.3209 -0.0180 -0.4550 4.4121 -0.0180
0.0126 0.0180 0.0569 0.5070 -0.0180 0.9314
D1 =
a
b
c
d
e
f
how can i find the unkowns a b c d e f if [B]*[D1]==0 and [D1] is the eigenvector
please give me all the details and the coding because i'm new to MATLAB and i'm still learning it
And thank you in advanced.
  2 comentarios
Ameer Hamza
Ameer Hamza el 5 de Oct. de 2020
D1 = [0; 0; 0; 0; 0; 0]
seems to be the only solution.
John D'Errico
John D'Errico el 5 de Oct. de 2020
Ameer - correct, in a sense. The matrix is full rank, and therefore no solution exists. The nullspace is theoretically empty. See my comment on Alan's answer.

Iniciar sesión para comentar.

Respuesta aceptada

Alan Stevens
Alan Stevens el 5 de Oct. de 2020
You seem a little confused about eigenvalues and eigenvectors. The following code might provide some clarification:
B = [0.6064 -0.4550 0.0776 -0.6532 0.4550 0.0126;
-0.4550 1.6724 0.0180 0.4550 -0.3209 0.0180;
0.0776 0.0180 0.3626 -0.0126 -0.0180 0.0569;
-0.6532 0.4550 -0.0126 1.0029 -0.4550 0.5070;
0.4550 -0.3209 -0.0180 -0.4550 4.4121 -0.0180;
0.0126 0.0180 0.0569 0.5070 -0.0180 0.9314]*10^6;
[V, D] = eig(B);
% The eigenvalues lie along the diagonal of D
% The corresponding eigenvectors are the columns of V
eigvals = diag(D);
disp('Eigenvalues')
disp(eigvals)
disp('Eigenvectors')
disp(V)
% Test Change n from 1 to 6 to check each one
n = 1;
LHS = B*V(:,n);
RHS = eigvals(n)*V(:,n);
disp('Check')
disp([LHS RHS])
This produces the following eigenvalues and eigenvectors
Eigenvalues
1.0e+06 *
0.0000
0.3368
0.6801
1.2532
2.0983
4.6193
Eigenvectors
-0.7069 0.1149 -0.5810 -0.0407 -0.3522 -0.1543
-0.0279 0.0922 -0.3828 -0.5569 0.7141 0.1551
0.0784 -0.9559 -0.2820 0.0225 -0.0076 0.0018
-0.6145 -0.1437 0.3404 0.4577 0.4967 0.1722
0.0092 -0.0249 0.0754 0.0193 0.2676 -0.9600
0.3400 0.2080 -0.5611 0.6912 0.2185 0.0286
  6 comentarios
Bruno Luong
Bruno Luong el 5 de Oct. de 2020
"so all i need to do is to take more than 4 decimal places in B to get more accurate results"
Not really, the lesson you should draw is that never post here a screen capture of matrix displaying alone. Give us your matrix in MAT format, unless you have a code to generate it.
You should avoid communicate numerical data with a screen output.
jad bousaid
jad bousaid el 6 de Oct. de 2020
Editada: Bruno Luong el 6 de Oct. de 2020
i'll sent you the formula(screenshot205) and also the dimensions(screemshot155) if it will help you:)
A for the colums 0.4*0.8
A for the beams 0.4*0.6
you should calculate this matrix(screenshot205) for each element then add them together to obtain the K matrix
and i almost forget you need the Mass matrix,it is a 6*6 matrix with 84.1 its diagonal.
([K]-w^2[M])Φ=0 you will calculate the values of w^2 then the Φ vectors.
and if i forgot anything please don't hesitate to contact me.
Thank You @Bruno Luong :)

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Creating and Concatenating Matrices en Help Center y File Exchange.

Productos

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by