
second order differential Equation
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Hello everyone
i have been trying to solve laplace transforms for second order differential equation: y''(t) - 6 * y'(t) + 9 * y(t) = 3 * sinh(t), y(0)=1, y'(0)=1 by Matlab to check with my hard calculation's answer which is y(t) = ((3/8) * e^t) - ((3/32) * e^-t) + ((23/32) * e^3t) - ((13/8) * t * e^3t). However it gave a warming in line 121 and i didnt really understand how to fix it properly. If anyone has idea, please let me know.
Thank you

0 comentarios
Respuestas (1)
Star Strider
el 7 de Oct. de 2020
The symbolic Math Toolbox no longer uses strings. That threq the warning.
For the rest:
% % y''(t) - 6 * y'(t) + 9 * y(t) = 3 * sinh(t), y(0)=1
syms s t y(t) Y(s) Dy0
eqn = diff(y,2) -6*diff(y) + 9*y == 3*sinh(t); % Time-Domain Equation
Eqn = laplace(eqn) % ‘s’-Domain Equation
Eqn = subs(Eqn,{laplace(y(t), t, s), y(0), subs(diff(y(t), t), t, 0)}, {Y(s), 1, Dy0}) % Substitute To Create Readable Expression
Eqn = simplify(Eqn, 'Steps', 250) % Simplify
Ys = isolate(Eqn, Y) % ‘Solve’ For ‘Y(s)’
produces:
Ys =
Y(s) == -(Dy0 + s - Dy0*s^2 + 6*s^2 - s^3 - 9)/(s^4 - 6*s^3 + 8*s^2 + 6*s - 9)
that in LaTeX is:

.
0 comentarios
Ver también
Categorías
Más información sobre Symbolic Math Toolbox en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!