Invalid training data. The output size (7) of the last layer does not match the number of classes (10).
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
Girish Tiwari
el 20 de Oct. de 2020
Comentada: Mohammad Sami
el 22 de Oct. de 2020
Hi,
I am trying to create a multi input-single output CNN. The two inputs have different sizes. This is the layer plot
I created a combined datastore with image input1 and input2 along with the labels. However while training the network I get an error as "Invalid training data. The output size (7) of the last layer does not match the number of classes (10)" . I have verified that there are 7 label categories and fullyconnected layer also has 7 output. I am unbale to determine how output class has become 10.
This is the code.
%Load and explore data
DatasetPath1 = "D:\DeepNetwork\Image_Datastore\4";
imdset1 = imageDatastore(DatasetPath1, ...
'IncludeSubfolders',true,'LabelSource','foldernames');
labelCount1 = countEachLabel(imdset1);
DatasetPath2 = "D:\DeepNetwork\Image_Datastore\5";
imdset2 = imageDatastore(DatasetPath2, ...
'IncludeSubfolders',true,'LabelSource','foldernames');
labelCount2 = countEachLabel(imdset2);
%Reading size of images
img1 = readimage(imdset1,2);
size_img_input1=size(img1)
img2 = readimage(imdset2,2);
size_img_input2=size(img2)
%Specify Training and Validation Sets
numTrainFiles = 60;
[imdsetTrain1,imdsetValidation1] = splitEachLabel(imdset1,numTrainFiles);
numTrainFiles = 60;
[imdsetTrain2,imdsetValidation2] = splitEachLabel(imdset2,numTrainFiles);
%Combine datastores with labels
read_size = 1;
TrainLabels = imdsetTrain1.Labels; % your labels here
% the order of your images and label must be the same
writematrix(TrainLabels,'TrainLabels.txt');
% %C = categorical
TrainlabelStore = tabularTextDatastore('TrainLabels.txt','TextscanFormats','%C',"ReadVariableNames",false);
TrainlabelStore.ReadSize = read_size;
TrainlabelStoreCell = transform(TrainlabelStore,@setcat_and_table_to_cell);
imdsCombinedTrain = combine(imdsetTrain1,imdsetTrain2, TrainlabelStoreCell);
ValidationLabels = imdsetValidation1.Labels; % your labels here
% the order of your images and label must be the same
writematrix(ValidationLabels,'ValidationLabels.txt');
% %C = categorical
ValidationlabelStore = tabularTextDatastore('ValidationLabels.txt','TextscanFormats','%C',"ReadVariableNames",false);
ValidationlabelStore.ReadSize = read_size;
ValidationlabelStoreCell = transform(ValidationlabelStore,@setcat_and_table_to_cell);
imdsCombinedValidation = combine(imdsetValidation1,imdsetValidation2, ValidationlabelStoreCell);
%Defining Layers
lgraph = layerGraph();
tempLayers = [
imageInputLayer([size_img_input1(1) size_img_input1(2)],"Name","imageinput_1")
convolution2dLayer([5 5],8,"Name","conv_1","Padding","same")
batchNormalizationLayer("Name","batchnorm_1")
reluLayer("Name","relu_1")
maxPooling2dLayer([2 2],"Name","maxpool_1","Padding","same","Stride",[2 2])
convolution2dLayer([5 5],16,"Name","conv_2","Padding","same")
batchNormalizationLayer("Name","batchnorm_2")
reluLayer("Name","relu_2")
maxPooling2dLayer([2 2],"Name","maxpool_2","Padding","same","Stride",[2 2])
convolution2dLayer([5 5],32,"Name","conv_3","Padding","same")
batchNormalizationLayer("Name","batchnorm_3")
reluLayer("Name","relu_3")];
lgraph = addLayers(lgraph,tempLayers);
tempLayers = [
imageInputLayer([size_img_input2(1) size_img_input2(2)],"Name","imageinput_2")
convolution2dLayer([5 5],8,"Name","conv_4","Padding","same")
batchNormalizationLayer("Name","batchnorm_4")
reluLayer("Name","relu_4")
maxPooling2dLayer([2 2],"Name","maxpool_4","Padding","same","Stride",[2 2])
convolution2dLayer([5 5],16,"Name","conv_5","Padding","same")
batchNormalizationLayer("Name","batchnorm_5")
reluLayer("Name","relu_5")
maxPooling2dLayer([2 2],"Name","maxpool_5","Padding","same","Stride",[2 2])
convolution2dLayer([5 5],32,"Name","conv_6","Padding","same")
batchNormalizationLayer("Name","batchnorm_6")
reluLayer("Name","relu_6")];
lgraph = addLayers(lgraph,tempLayers);
tempLayers = [
concatenationLayer(2,2,"Name","concat")
convolution2dLayer([5 5],8,"Name","conv_7","Padding","same")
batchNormalizationLayer("Name","batchnorm_7")
reluLayer("Name","relu_7")
maxPooling2dLayer([2 2],"Name","maxpool_7","Padding","same","Stride",[2 2])
convolution2dLayer([5 5],16,"Name","conv_8","Padding","same")
batchNormalizationLayer("Name","batchnorm_8")
reluLayer("Name","relu_8")
maxPooling2dLayer([2 2],"Name","maxpool_8","Padding","same","Stride",[2 2])
convolution2dLayer([5 5],32,"Name","conv_9","Padding","same")
batchNormalizationLayer("Name","batchnorm_9")
reluLayer("Name","relu_9")
fullyConnectedLayer(7,"Name","fc")
softmaxLayer("Name","softmax")
classificationLayer("Name","classoutput")];
lgraph = addLayers(lgraph,tempLayers);
% clean up helper variable
clear tempLayers;
lgraph = connectLayers(lgraph,"relu_6","concat/in2");
lgraph = connectLayers(lgraph,"relu_3","concat/in1");
plot(lgraph);
%%
options = trainingOptions('sgdm', ...
'InitialLearnRate',0.01, ...
'MaxEpochs',10, ...
'Shuffle','every-epoch', ...
'ValidationData',imdsCombinedValidation, ...
'ValidationFrequency',3, ...
'Verbose',false, ...
'Plots','training-progress', 'ExecutionEnvironment','cpu');
net = trainNetwork(imdsCombinedTrain,lgraph,options);
%Below is the function to create combined datastore with labels (refer https://www.mathworks.com/matlabcentral/answers/586949-multi-input-imagedatastore):
function [dataout] = setcat_and_table_to_cell(datain)
validcats = string(0:9); % define valid labels for categorical array
datain.(1) = setcats(datain.(1),validcats);
dataout = table2cell(datain);
end
0 comentarios
Respuesta aceptada
Mohammad Sami
el 21 de Oct. de 2020
This is because of this part of the setcat_and_table_to_cell function
validcats = string(0:9); % define valid labels for categorical array
datain.(1) = setcats(datain.(1),validcats);
It sets 10 valid categories. You should change the validcats to the appropriate 7 categories for your case.
2 comentarios
Más respuestas (0)
Ver también
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!