Does the values of "start" effects the estimation of the 3 parameter weibull distribution
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Mustafa Vural
el 23 de Oct. de 2020
Respondida: Pratyush Roy
el 28 de Oct. de 2020
To estimate the 3 parameter weibull distribution, matlab needs start values. You can read here:
I am generating random numbers with 3 parameter weibull distribution and estimating them with MLE.
For that, I need to give start values.
params = mle(data,'pdf',custompdf,'start',[5 5 5],...
'Options',opt,'LowerBound',[0 0 -Inf],'UpperBound',[Inf Inf min(data)])
Does anybody tested different startvalues? I tested a lot of start values. I used "rng(default)" to have the same "random" numbers every run and checked the results, if something changes.
Sometime the results changes a little bit, sometimes nothing changes. So do someone checked the startvalue much more accurate?
0 comentarios
Respuesta aceptada
Pratyush Roy
el 28 de Oct. de 2020
Hi Mustafa,
The mle function uses the “fminsearch” or “fmincon” options to maximise the mle parameters iteratively. The ”start” parameter refers to the initial set of values for the parameters and it changes with every step of the optimization process. A poor choice of starting point can cause mle to converge to a local optimum that is not the global maximum, or to fail to converge entirely.
Since the dataset generated by picking random samples from a Weibull distribution, the optimization leads us to the proper estimates irrespective of the initial condition. However, if we try to fit Weibull distribution to any arbitrary data, this might cause problems to achieve convergence.
You can refer to the following links for further help:
Regards,
Pratyush.
0 comentarios
Más respuestas (0)
Ver también
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!