To take the partial derivative of a function using matlab

1.163 visualizaciones (últimos 30 días)
Here is a particular code. Can anyone please help me in taking the analytical (partial) derivative of the function 'F' along X (i.e., w.r.t. X) along Y (i.e., w.r.t. Y) and along the diagonal (i.e., w.r.t. X plus w.r.t. Y) using matlab command.
[X, Y]=meshgrid(-1:2/511:+1, -1:2/511:+1);
F=sqrt(3).*(2.*(X.^2+Y.^2)-1);
Thanking You!

Respuesta aceptada

Walter Roberson
Walter Roberson el 11 de Feb. de 2013
If you have the symbolic toolkit
syms X Y
F=sqrt(3).*(2.*(X.^2+Y.^2)-1);
diff(F,X)
diff(F,Y)
diff(F,X,Y)
  5 comentarios
Olivar Luis Eduardo
Olivar Luis Eduardo el 25 de Abr. de 2023
I think that numerical calculation is being requested, not the symbolic one. In other words, the surface is a matrix
Sergio E. Obando
Sergio E. Obando el 15 de Jun. de 2024
For clarification, the numerical and symbolic calculations are fairly similar code wise. Walter has provided the symbolic gradients (as requested), while Youssef has provided the numerical ones. One correction is that dX = matlabFunction(diff(F,x)) is only a function of x, which is why it generates an error when calling dX(x,y).
To go in a bit more detail on Walter's suggested solution:
clear
% Define Mesh
[ X,Y] = meshgrid(-1:2/10:1,-1:2/10:1); % Using 2/10 as spacing
% Analytical Solution (i.e. symbolic var and fnc)
syms F(x,y)
F(x,y) = sqrt(3).*(2.*(x.^2+y.^2)-1);
fsurf(F) % You don't have to pass X or Y
% Analytical Gradients and Hessian
dFdx = diff(F,x)
dFdx(x, y) = 
dFdy = diff(F,y)
dFdy(x, y) = 
gradF = gradient(F)
gradF(x, y) = 
HessF = hessian(F)
HessF(x, y) = 
% or Second Order Derivatives
dFdxdy = diff(F,x,y)
dFdxdy(x, y) = 
0
% Evaluate gradients on a given range
dFdX = double(dFdx(-1:2/10:1,y))
dFdX = 1x11
-6.9282 -5.5426 -4.1569 -2.7713 -1.3856 0 1.3856 2.7713 4.1569 5.5426 6.9282
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
% Substitute numerical values in symbolic expression
U = subs(dFdx,[x y],{X,Y}); % call double to convert to numeric representation
V = subs(dFdy,[x y],{X,Y});
figure
fcontour(F,[-1 1],"Fill","on")
hold on
quiver(X,Y,U,V,'r')
hold off
And now compare with the numerical approach:
clear
% Numerical Solution
F= @(x,y) sqrt(3).*(2.*(x.^2+y.^2)-1);
fsurf(F,[-1 1])
[X, Y]=meshgrid(-1:2/10:1,-1:2/10:1);
figure
Z = F(X,Y);
surf(X,Y,Z)
% Numerical Gradient
[Fx,Fy] = gradient(Z);
figure
contourf(X,Y,Z)
hold on
quiver(X,Y,Fx,Fy,'r')
hold off

Iniciar sesión para comentar.

Más respuestas (4)

Youssef  Khmou
Youssef Khmou el 11 de Feb. de 2013
Editada: Youssef Khmou el 11 de Feb. de 2013
hi , you can use "gradient" :
[dF_x,dF_y]=gradient(F);
subplot(1,2,1), imagesc(dF_x), title(' dF(x,y)/dx')
subplot(1,2,2), imagesc(dF_y), title(' dF(x,y)/dy')
  2 comentarios
Walter Roberson
Walter Roberson el 11 de Feb. de 2013
If you do not use the symbolic toolbox, gradient is numeric rather than analytic.
Youssef  Khmou
Youssef Khmou el 11 de Feb. de 2013
Editada: Youssef Khmou el 11 de Feb. de 2013
True, but he has two sides because his example is numerical, you answered to the theoretical side ,while i answered to the numerical one,

Iniciar sesión para comentar.


rapalli adarsh
rapalli adarsh el 9 de En. de 2019
syms c(x,y);
c(x,y)=input('enter cost Rs=\n');
cx=diff(c,x);
cy=diff(c,y);
s1=double(cx(80,20));
s2=double(cy(80,20));
if s1>s2 disp('fire standind stores')
else disp('fire standing stores')
end

Santhiya S
Santhiya S el 19 de Mzo. de 2023
Using MATLAB, find the partial derivative with respect to ‘x’ and ‘y’ of the function f(x) = tan−1(x/y)
  1 comentario
Sergio E. Obando
Sergio E. Obando el 15 de Jun. de 2024
Replace your function in Walter's code:
syms f(x,y)
f(x,y) = atan(x/y)
f(x, y) = 
dFdx = diff(f,x)
dFdx(x, y) = 
dFdy = diff(f,y)
dFdy(x, y) = 

Iniciar sesión para comentar.


Olivar Luis Eduardo
Olivar Luis Eduardo el 25 de Abr. de 2023
Good morning, I also have the same question, I have consulted a lot on the web, but they always give answers as if the surface were symbolic, but it is numerically and the calculation of the partial derivative of a matrix of order mxn remains.
  1 comentario
Sergio E. Obando
Sergio E. Obando el 15 de Jun. de 2024
Editada: Sergio E. Obando el 15 de Jun. de 2024
Please take a look at my comment above. The surface values are found by substituting/evaluating the symbolic expression at the grid points. Assuming you are using R2021b or later, you may find symmatrix useful for manipulation of matrix expressions, e.g. gradient of matrix multiplication

Iniciar sesión para comentar.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by