How to know which elements of a symbolic vector are real?
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
I have this sym vector:
c = -(179249^(1/2)*(634751*root(z^6 - (58169238750*z^4)/634751 + (130018668750000*z^2)/48827 - 1184625000000000000/48827, z, 1)^4 - 45299238750*root(z^6 - (58169238750*z^4)/634751 + (130018668750000*z^2)/48827 - 1184625000000000000/48827, z, 1)^2 + 974025000000000)^(1/2))/26887350
(179249^(1/2)*(634751*root(z^6 - (58169238750*z^4)/634751 + (130018668750000*z^2)/48827 - 1184625000000000000/48827, z, 1)^4 - 45299238750*root(z^6 - (58169238750*z^4)/634751 + (130018668750000*z^2)/48827 - 1184625000000000000/48827, z, 1)^2 + 974025000000000)^(1/2))/26887350
-(179249^(1/2)*(634751*root(z^6 - (58169238750*z^4)/634751 + (130018668750000*z^2)/48827 - 1184625000000000000/48827, z, 2)^4 - 45299238750*root(z^6 - (58169238750*z^4)/634751 + (130018668750000*z^2)/48827 - 1184625000000000000/48827, z, 2)^2 + 974025000000000)^(1/2))/26887350
(179249^(1/2)*(634751*root(z^6 - (58169238750*z^4)/634751 + (130018668750000*z^2)/48827 - 1184625000000000000/48827, z, 2)^4 - 45299238750*root(z^6 - (58169238750*z^4)/634751 + (130018668750000*z^2)/48827 - 1184625000000000000/48827, z, 2)^2 + 974025000000000)^(1/2))/26887350
-(179249^(1/2)*(634751*root(z^6 - (58169238750*z^4)/634751 + (130018668750000*z^2)/48827 - 1184625000000000000/48827, z, 3)^4 - 45299238750*root(z^6 - (58169238750*z^4)/634751 + (130018668750000*z^2)/48827 - 1184625000000000000/48827, z, 3)^2 + 974025000000000)^(1/2))/26887350
(179249^(1/2)*(634751*root(z^6 - (58169238750*z^4)/634751 + (130018668750000*z^2)/48827 - 1184625000000000000/48827, z, 3)^4 - 45299238750*root(z^6 - (58169238750*z^4)/634751 + (130018668750000*z^2)/48827 - 1184625000000000000/48827, z, 3)^2 + 974025000000000)^(1/2))/26887350
-(179249^(1/2)*(634751*root(z^6 - (58169238750*z^4)/634751 + (130018668750000*z^2)/48827 - 1184625000000000000/48827, z, 4)^4 - 45299238750*root(z^6 - (58169238750*z^4)/634751 + (130018668750000*z^2)/48827 - 1184625000000000000/48827, z, 4)^2 + 974025000000000)^(1/2))/26887350
(179249^(1/2)*(634751*root(z^6 - (58169238750*z^4)/634751 + (130018668750000*z^2)/48827 - 1184625000000000000/48827, z, 4)^4 - 45299238750*root(z^6 - (58169238750*z^4)/634751 + (130018668750000*z^2)/48827 - 1184625000000000000/48827, z, 4)^2 + 974025000000000)^(1/2))/26887350
-(179249^(1/2)*(634751*root(z^6 - (58169238750*z^4)/634751 + (130018668750000*z^2)/48827 - 1184625000000000000/48827, z, 5)^4 - 45299238750*root(z^6 - (58169238750*z^4)/634751 + (130018668750000*z^2)/48827 - 1184625000000000000/48827, z, 5)^2 + 974025000000000)^(1/2))/26887350
(179249^(1/2)*(634751*root(z^6 - (58169238750*z^4)/634751 + (130018668750000*z^2)/48827 - 1184625000000000000/48827, z, 5)^4 - 45299238750*root(z^6 - (58169238750*z^4)/634751 + (130018668750000*z^2)/48827 - 1184625000000000000/48827, z, 5)^2 + 974025000000000)^(1/2))/26887350
-(179249^(1/2)*(634751*root(z^6 - (58169238750*z^4)/634751 + (130018668750000*z^2)/48827 - 1184625000000000000/48827, z, 6)^4 - 45299238750*root(z^6 - (58169238750*z^4)/634751 + (130018668750000*z^2)/48827 - 1184625000000000000/48827, z, 6)^2 + 974025000000000)^(1/2))/26887350
(179249^(1/2)*(634751*root(z^6 - (58169238750*z^4)/634751 + (130018668750000*z^2)/48827 - 1184625000000000000/48827, z, 6)^4 - 45299238750*root(z^6 - (58169238750*z^4)/634751 + (130018668750000*z^2)/48827 - 1184625000000000000/48827, z, 6)^2 + 974025000000000)^(1/2))/26887350
Is it any easy (coded) way I can know which elements are real and which aren't?
0 comentarios
Respuestas (2)
Gautam
el 11 de Feb. de 2025
Hello Renzo,
To determine which elements of a symbolic vector are real, you can use the isAlways function in conjunction with the isreal condition. This approach checks whether each element of the symbolic vector is always real under all assumptions.
0 comentarios
Ver también
Categorías
Más información sobre Polynomials en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!