Runge Kutta method for coupled oscillator system.
12 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Heya :)
el 10 de Nov. de 2020
Comentada: Heya :)
el 12 de Nov. de 2020
I am trying to solve these equations with the help of Runge Kutta Method. I am not sure whether I am writing the code correctly or we can use this method for coupled also getting this error (mentioned at the end of the code). Please help me to refine my code.
close all; clear all; clc;
%initializing x,y,t
t(1)=0;
x1(1)=1;
y1(1)=1;
x2(1)=2;
y2(1)=2;
%value of constants
a=0.1;
b=0.3;
omega=4;
Cnp=0.2;
G=1;
h=0.1; %step size
t=0:h:50;
%ode
p=@(t,x1,y1,x2,y2) (a-x1^2-y1^2)*x1-omega*y1+G*Cnp(x2-x1);
q=@(t,x1,y1,x2,y2) (a-x1^2-y1^2)*y1+omega*x1+G*Cnp(y2-y1);
%loop
for i=1:(length(t)-1)
k1=p(t(i),x1(i),y1(i),x2(i),y2(i));
l1=q(t(i),x1(i),y1(i),x2(i),y2(i));
k2=p(t(i)+h/2,(x1(i)+(h/2)*k1),(y1(i)+(h/2)*l1),(x2(i)+(h/2)*k1),(y2(i)+(h/2)*l1));
l2=q(t(i)+h/2,(x1(i)+(h/2)*k1),(y1(i)+(h/2)*l1),(x2(i)+(h/2)*k1),(y2(i)+(h/2)*l1));
k3=p(t(i)+h/2,(x1(i)+(h/2)*k2),(y1(i)+(h/2)*l2),(x2(i)+(h/2)*k2),(y2(i)+(h/2)*l2));
l3=q(t(i)+h/2,(x1(i)+(h/2)*k2),(y1(i)+(h/2)*l2),(x2(i)+(h/2)*k2),(y2(i)+(h/2)*l2));
k4=p(t(i)+h,(x1(i)+k3*h),(y1(i)+l3*h),(x2(i)+k3*h),(y2(i)+l3*h));
l4=q(t(i)+h,(x1(i)+k3*h),(y1(i)+l3*h),(x2(i)+k3*h),(y2(i)+l3*h));
x(i+1) = x(i) + h*(k1+2*k2+2*k3+k4)/6;
y(i+1) = y(i) + h*(l1+2*l2+2*l3+l4)/6;
end
%draw
plot(t,x,'r')
xlabel('X','fontsize',14,'fontweight','bold')
ylabel('y','fontsize',14,'fontweight','bold')
set(gca,'Color','k')
****Error***
Array indices must be positive integers or logical values.
Error in coupled>@(t,x1,y1,x2,y2)(a-x1^2-y1^2)*x1-omega*y1+G*Cnp(x2-x1) (line 17)
p=@(t,x1,y1,x2,y2) (a-x1^2-y1^2)*x1-omega*y1+G*Cnp(x2-x1);
Error in coupled (line 25)
k2=p(t(i)+h/2,(x1(i)+(h/2)*k1),(y1(i)+(h/2)*l1),(x2(i)+(h/2)*k1),(y2(i)+(h/2)*l1));
0 comentarios
Respuesta aceptada
Alan Stevens
el 10 de Nov. de 2020
Do you mean like this
%initializing x,y,t
h=0.1; %step size
t=0:h:50;
x1 = zeros(1,numel(t)); y1 = x1; x2 = x1; y2 = x1;
x1(1)=1;
y1(1)=1;
x2(1)=2;
y2(1)=2;
%value of constants
a=0.1;
b=0.3;
omega=4;
Cnp=0.2;
G=1;
%ode
p=@(x1,y1,x2,y2) (a-x1^2-y1^2)*x1-omega*y1+G*Cnp*(x2-x1);
q=@(x1,y1,x2,y2) (a-x1^2-y1^2)*y1+omega*x1+G*Cnp*(y2-y1);
%loop
for i=1:(length(t)-1)
k1=p(x1(i),y1(i),x2(i),y2(i));
l1=q(x1(i),y1(i),x2(i),y2(i));
k2=p((x1(i)+(h/2)*k1),(y1(i)+(h/2)*l1),(x2(i)+(h/2)*k1),(y2(i)+(h/2)*l1));
l2=q((x1(i)+(h/2)*k1),(y1(i)+(h/2)*l1),(x2(i)+(h/2)*k1),(y2(i)+(h/2)*l1));
k3=p((x1(i)+(h/2)*k2),(y1(i)+(h/2)*l2),(x2(i)+(h/2)*k2),(y2(i)+(h/2)*l2));
l3=q((x1(i)+(h/2)*k2),(y1(i)+(h/2)*l2),(x2(i)+(h/2)*k2),(y2(i)+(h/2)*l2));
k4=p((x1(i)+k3*h),(y1(i)+l3*h),(x2(i)+k3*h),(y2(i)+l3*h));
l4=q((x1(i)+k3*h),(y1(i)+l3*h),(x2(i)+k3*h),(y2(i)+l3*h));
x1(i+1) = x1(i) + h*(k1+2*k2+2*k3+k4)/6;
y1(i+1) = y1(i) + h*(l1+2*l2+2*l3+l4)/6;
x2(i+1) = x2(i) + h*(k1+2*k2+2*k3+k4)/6;
y2(i+1) = y2(i) + h*(l1+2*l2+2*l3+l4)/6;
end
%draw
plot(t,x1,'r',t,x2,'y')
xlabel('t','fontsize',14,'fontweight','bold')
ylabel('x1 & x2','fontsize',14,'fontweight','bold')
set(gca,'Color','k')
legend('x1','x2','TextColor','w')
figure
plot(t,y1,'r',t,y2,'y')
xlabel('t','fontsize',14,'fontweight','bold')
ylabel('y1 & y2','fontsize',14,'fontweight','bold')
set(gca,'Color','k')
legend('y1','y2','TextColor','w')
3 comentarios
Alan Stevens
el 12 de Nov. de 2020
That is just setting aside storage space for those variables. It makes the loop more efficient as space doesn't then have to be found for their new elements every iteration of the loop.
Más respuestas (0)
Ver también
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!