How to plot bifurcation with Delay Differential equations?

11 visualizaciones (últimos 30 días)
I want to draw the bifurcation diagram for the model.
All parameters are positve constant.
The value of parameters are as:
A1 = 0.8463, A2 = 0.6891, K = 1.2708, beta1 = 0.4110, beta2 = 0.1421,
The diagram are vary tau from 68 to 72 in steps of 0.001. For inital conditions X(0) = 0.26 and Y(0) = 0.58.
Please ansers me for Matlab code to plot the bifurcation diagrams.
  7 comentarios
kaushik dehingia
kaushik dehingia el 11 de Feb. de 2021
Movida: Dyuman Joshi el 15 de Mzo. de 2024
Can anyone share the Bifurcation diagram code for a delayed system? I t will be very helpful for me.
kaushik dehingia
kaushik dehingia el 11 de Feb. de 2021
Can anyone share me the bifurcation code?

Iniciar sesión para comentar.

Respuesta aceptada

Alan Stevens
Alan Stevens el 17 de Nov. de 2020
How about the following for your loop (it assumed you have defined tau earlier in the file):
for j=1:N+1
if t(j)<=tau
xd = x(1);
yd = y(1);
else
d = ceil((t(j)-tau)/h);
xd = x(d);
yd = y(d);
end
t(j+1)=t(j)+h;
%tempx(j+1)=tempx(j)+h;
%tempy(j+1)=tempy(j)+h;
k1x=fx(t(j), x(j), y(j));
k1y=fy(t(j), xd, yd, y(j));
%k1y=fy(t(j), x(j), y(j), tempx(j), tempy(j));
k2x=fx(t(j)+h/2, x(j)+h/2*k1x, y(j)+h/2*k1y);
k2y=fy(t(j)+h/2, xd+h/2*k1x, yd+h/2*k1y, y(j)+h/2*k1y);
%k2y=fy(t(j)+h/2, x(j)+h/2*k1x, y(j)+h/2*k1y, tempx(j)+h/2*k1x, tempy(j)+h/2*k1y);
k3x=fx(t(j)+h/2, x(j)+h/2*k2x, y(j)+h/2*k2y);
k3y=fy(t(j)+h/2, xd+h/2*k2x, yd+h/2*k2y, y(j)+h/2*k2y);
%k3y=fy(t(j)+h/2, x(j)+h/2*k2x, y(j)+h/2*k2y, tempx(j)+h/2*k2x, tempy(j)+h/2*k2y);
k4x=fx(t(j)+h, x(j)+h*k3x, y(j)+h*k3y);
k4y=fy(t(j)+h, xd+h*k3x, yd+h*k3y, y(j)+h*k3y);
%k4y=fy(t(j)+h, x(j)+h*k3x, y(j)+h*k3y, tempx(j)+h*k3x, tempy(j)+h*k3y);
x(j+1)=x(j)+h/6*(k1x+2*k2x+2*k3x+k4x);
y(j+1)=y(j)+h/6*(k1y+2*k2x+2*k3y+k4y);
end
  20 comentarios
ibtissam benamara
ibtissam benamara el 20 de Jun. de 2021
this is not my question, i undersand why you use (1,end-50:end);
the question why you will take x(i,:)=y(i,:), consequetly, it will give the same figure for the two species, this not true;
Akanksha Rajpal
Akanksha Rajpal el 30 de En. de 2022
Your code really helped, but I was wondering if we can use similar coding if we want to extend the work to two delays? I tried that but it was showing error.
If you could help me regarding this and provide a code for this example only where the delay residing in X and Y are tau1 and tau2 respectively.

Iniciar sesión para comentar.

Más respuestas (1)

Priya Verma
Priya Verma el 15 de Mzo. de 2024
In question, the denominator term is define in first delay variable term. Why are you all this term is defining in second delay term.
i. e. fy =@(t,x,y) A2*x*y/(1+y)-b2*y; in this denominator term is (1+y) .....?
A2*xd*yd/(1+yd)-b2*y; in this denominator term is (1+yd) .....?
please, explain...!
  21 comentarios
Priya Verma
Priya Verma el 26 de Mzo. de 2024
Is there any code, package, etc to fit the parameter values of dde?
Priya Verma
Priya Verma el 26 de Mzo. de 2024
or find tau value according to model?

Iniciar sesión para comentar.

Categorías

Más información sobre 2-D and 3-D Plots en Help Center y File Exchange.

Productos


Versión

R2019a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by