replicate Robust Standard Errors with formula
4 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Hello, I am trying to manually calculate robust SEs for a heteroskadistic data set.
All of the formulas I have attempted generate either a 500X1 or 500X500 matrix.
How can I compare my results with the 2X1 matrix generated by WhiteSE command?
Please see below my code. All suggestions are welcomed.
Thanks in advance,
Robert
clear
n=500;
X=[1:500];
y=2*X+normrnd(0,sqrt(X.^1.8));
mdl=fitlm(X,y,'linear'); %add regression line
b=X\y; % OLS estimate
e=y-X*b; % OLS residuals
SSRb=e'*e; % SSR function at OLS estimate
%plot(X,y,'o')
plot(mdl)
plotResiduals(mdl,'fitted')
%%Unadjusted statistics
h_cov = mdl.CoefficientCovariance;
h_SE = mdl.SSE;
h_coeff = mdl.Coefficients;
%%Robust Standard Errors
[WhiteCov,WhiteSe,Whitecoeff] = hc(mdl); % White's estimates
%HCE= 1/n*(SSRb/e).*(SSRb/e.*(e.^2)).*(SSRb/e);
%HCE= 1/n*(sum((SSRb/e)).*(sum((SSRb/e.*(e.^2))).*(sum(SSRb/e));
%HCE= 1/n*(sum((SSRb/e)).*(sum((SSRb/e.*(e.^2))).*(sum(SSRb/e))));
%HCE = (SSRb/e).*SSRb'.*(diag(SSRb)).*(SSRb/e);
%HCE = (SSRb/e).*SSRb'.*(diag(e.^2)).*(SSRb/e);
HCE = (SSRb/-1).*(SSRb'.*(diag(e.^2))).*(SSRb/-1);
0 comentarios
Respuestas (0)
Ver también
Categorías
Más información sobre Linear and Nonlinear Regression en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!