Performing LSTM Regression on matrices without reshaping matrix elements into sequence of vectors, or performing LSTM Regression on 3-D data?
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
Hello Everyone,
I am trying to perform LSTM Regression on matrices without reshaping matrix elements into sequence of vectors, (i.e. directly perform LSTM regression on sequence of matrices) or performing LSTM Regression on 3-D data where the first two dimension form the content of a mtrix and the third dimension is a the time dimension leading to time sequence of matrices.
This is giving me errors.
I want to input sequence of matrices to lstm regression and get the output in the form of matrices only. Is this possible?
Any reference code anywhere would be helpful?
Can this acheived in programs other than Matlab?
0 comentarios
Respuestas (1)
Srivardhan Gadila
el 28 de Nov. de 2020
You can define your deep neural network and use the following trainNetwork syntax: net = trainNetwork(sequences,Y,layers,options). Refer to the expalanation of sequences & Y and arrange the data format accordingly. Also the following code may give you an idea:
inputSize = [13 11 1 5];
nTrainSamples = 50;
filterSize = 5;
numFilters = 20;
numHiddenUnits = 200;
numResponses = 5;
layers = [ ...
sequenceInputLayer(inputSize,'Name','input')
flattenLayer('Name','flatten')
lstmLayer(numHiddenUnits,'Name','lstm','OutputMode','sequence')
fullyConnectedLayer(numResponses, 'Name','fc')
regressionLayer('Name','regression')];
lgraph = layerGraph(layers);
analyzeNetwork(layers)
%%
trainData = arrayfun(@(x)rand([inputSize(:)' 1]),1:nTrainSamples,'UniformOutput',false)';
trainLabels = arrayfun(@(x)rand(numResponses,1),1:nTrainSamples,'UniformOutput',false)';
size(trainData)
size(trainLabels)
%%
options = trainingOptions('adam', ...
'InitialLearnRate',0.005, ...
'LearnRateSchedule','piecewise',...
'MaxEpochs',300, ...
'MiniBatchSize',1024, ...
'Verbose',1, ...
'Plots','training-progress');
net = trainNetwork(trainData,trainLabels,lgraph,options);
Ver también
Categorías
Más información sobre Linear Regression en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!