How can I plot this function using Brent's method?

8 visualizaciones (últimos 30 días)
Boran Kolcu
Boran Kolcu el 23 de Nov. de 2020
Comentada: John D'Errico el 24 de Nov. de 2020
in the interval (0:0004; 0:0012).

Respuesta aceptada

Manoj Kumar Koduru
Manoj Kumar Koduru el 23 de Nov. de 2020
f=@(u) u*(1+0.7166/cos(25*sqrt(u)))-1.6901e-2; %Equation
a=-10;
b=+10;
err=0.001;
%Testing root is bracketed between [a b]
if f(a)*f(b) >=0
opts=struct('WindowsStyle','model','Interpreter','tex');
F=errordlg('The Root is out of the Brackets,increase a and b values'....
,'Roots Are Not Bracketed',opts); %Message Box
end
%Swapping a and b Contents
if abs(f(a)) < abs(f(b))
L=a; a=b; b=L;
end
c=a;
MFlag=1;
%Main Loop
delta =err; i=0;
while abs(b-a) >=err
i=i+1;
if f(a) ~=f(c)&&f(b) ~=f(c)
s=a*f(b)*f(c)/(f(a)-f(b))*(f(a)-f(c))+....
b*f(a)*f(c)/((f(b)*f(a))*(f(b)-f(c)))+...
c*f(a)*f(b)/((f(c)-f(a))*(f(c)-f(b))); %Inverse Quadratic Interpolation
else
s=b-f(b)*(b-a)/(f(b)-f(a)); %Secant method
end
if s<=(3*a+b)/4 || s>=b ||....
(MFlag==1 && abs(s-b) >= abs(b-c)/2) ||....
(MFlag==0 && abs(s-b) >= abs(c-d)/2) ||....
(MFlag==1 && abs(b-c) < abs(delta)) ||....
(MFlag==0 && abs(c-d) >= abs(delta))
s=(a+b)/2; %Bisection Method
MFlag=1;
else
MFlag=0;
end
%Calculate f(s)
d=c; c=b;
if f(a)*f(s) <0
b=s;
else
a=s;
end
%Swapping a and b contents
if abs(f(a)) < abs(f(b))
if abs(f(a)) < abs(f(b))
L=a; a=b; b=L;
end
end
ss(i,1)=s;
dd(i,1)=d;
ii(i,1)=i;
end
plot(1:i,ss,'Linewidth',2);
grid on
title('Brent Method')
xlabel('Number of Itterations')
ylabel('Root Contents')
  2 comentarios
Boran Kolcu
Boran Kolcu el 23 de Nov. de 2020
Thank you so much!
John D'Errico
John D'Errico el 24 de Nov. de 2020
Please don't do obvious homework problems for students. They learn nothing from you, except to then post every homework question here.

Iniciar sesión para comentar.

Más respuestas (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by