[predictions,score1,cost1] = predict(hypernormoutNB,NBxtestx)
[fpr0,tpr0,T0,AUC0,OPTROCPT0] = perfcurve(NBxtesty,score1(:,1:1),0);
[fpr1,tpr1,T1,AUC1,OPTROCPT1] = perfcurve(NBxtesty,score1(:,2:2),1);
[fpr2,tpr2,T2,AUC2,OPTROCPT2] = perfcurve(NBxtesty,score1(:,3:3),2);
[fpr3,tpr3,T3,AUC3,OPTROCPT3] = perfcurve(NBxtesty,score1(:,4:4),3);
[fpr4,tpr4,T4,AUC4,OPTROCPT4] = perfcurve(NBxtesty,score1(:,5:5),4);
[fpr5,tpr5,T5,AUC5,OPTROCPT5] = perfcurve(NBxtesty,score1(:,6:6),5);
figure
plot(fpr0,tpr0)
title('Naive Bayes ROC Curves')
xlabel('False Positive')
ylabel('True Positive')
hold on
plot(fpr1,tpr1)
plot(fpr2,tpr2)
plot(fpr3,tpr3)
plot(fpr4,tpr4)
plot(fpr5,tpr5)
plot(OPTROCPT0(1),OPTROCPT0(2),'ro')
plot(OPTROCPT1(1),OPTROCPT1(2),'ro')
plot(OPTROCPT2(1),OPTROCPT2(2),'ro')
plot(OPTROCPT3(1),OPTROCPT3(2),'ro')
plot(OPTROCPT4(1),OPTROCPT4(2),'ro')
plot(OPTROCPT5(1),OPTROCPT5(2),'ro')
hold off
0 Comments
Sign in to comment.