normalising and reverse normalising data
16 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
For forecasting , I normalised the data before training for test and train data , then when i plot the rmse , i get rmse 0.2.but when i try to reverse the normalised values to match with orginal target of test data it shows high error.
i have used below code to normalise and denormalise :
[pn,ps] = mapminmax(XTrain);
[tn,ts] = mapminmax(YTrain);
[qn,qs] = mapminmax(XTest);
[rn,rs] = mapminmax(YTest);
net = trainNetwork(pn,tn,layers,options);
YPred=predict(net,qn);
YPred1 = mapminmax('reverse',YPred,ts);
what could be the reason ?
3 comentarios
Respuestas (1)
Karan Nandankar
el 28 de Dic. de 2020
Hi,
Looks like you have used the wrong Process Settings in the variable 'YPred1'. As I can see you are using XTest as your independent variable for Model Prediction, and the corresponding dependent variable YTest is normalized with Process Setting parameter 'rs'. However, for the variable YPred1 you have mapped the predictions against 'ts' (which is for YTrain).
In order to reverse the normalization, you can change the Process Setting parameter in YPred1 from 'ts' to 'rs'.
YPred1 = mapminmax('reverse',YPred,rs);
0 comentarios
Ver también
Categorías
Más información sobre Statistics and Machine Learning Toolbox en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!