How to do FT Time shift and Time scaling properties
54 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
ong
el 28 de Mzo. de 2013
Comentada: Peter Seibold
el 29 de Ag. de 2022
Currently i am trying use matlab to do the FT properties -time shift and time scaling, can someone help me in the implementation? i would like to prove that Timeshift: F[x(t-τ) ]= e^(-jwτ) F[x(t)]
Time scaling: F[x(at)]=1/(|a|) X(w/a)
Thanks.
0 comentarios
Respuesta aceptada
Wayne King
el 28 de Mzo. de 2013
Editada: Wayne King
el 28 de Mzo. de 2013
t=0:0.001:0.1-0.001;
Fs = 1e3;
freq1 = 100;
x1=cos(2*pi*freq1*t);
Delay=2;
yp = fft(x1);
yp = yp(1:length(x1)/2+1);
f = 0:Fs/length(x1):500;
yp = yp.*exp(-1i*2*pi*f*Delay*(1/Fs));
yp = [yp conj(fliplr(yp(2:end-1)))];
y = ifft(yp,'symmetric');
plot(t(1:100),x1(1:100),'b');
hold on;
plot(t(1:100),y(1:100),'r');
2 comentarios
AYDIN KARA
el 2 de En. de 2021
Your code just fails when sampling frequency increases.
For f = 1e4 it gives matrix dimensions must match error. Other wise if I keep your sampling frequency at 1e6
After that point, even if I increase the delay by 2000. I could not observe any delay.
Sorry but it seems your code works for one case.
Más respuestas (6)
Wayne King
el 29 de Mzo. de 2013
Editada: Wayne King
el 29 de Mzo. de 2013
They agree if you get the delay right. You're not delaying the signal by 2. You're trying to delay the signal by two samples, but that has to take into account the sampling interval, so you're actually delaying the signal by 0.002 seconds.
t = 0:0.001:1-0.001;
freq1 = 100;
Fs = 1000;
x1=cos(2*pi*freq1*t);
Delay=2;
yp = fft(x1);
yp = yp(1:length(x1)/2+1);
f = 0:Fs/length(x1):500;
yp = yp.*exp(-1i*2*pi*f*Delay*(1/Fs));
yp = [yp conj(fliplr(yp(2:end-1)))];
yrec = ifft(yp,'symmetric');
Compare with
D=2;
Fs=1000;
freq1=100;
t=0:0.001:1-0.001;
x=cos(2*pi*freq1*(t-(D*(1/Fs))));
y1 = fft(x);
y1T = ifft(y1,'symmetric');
max(abs(y1T-yrec))
You can see the above are identical. Thank you for accepting my answer if I have helped you.
Wayne King
el 28 de Mzo. de 2013
Editada: Wayne King
el 28 de Mzo. de 2013
n = 0:159;
x = cos(pi/4*n);
y = cos(pi/4*(n-2));
xdft = fft(x);
ydft = fft(y);
xdft(21)
ydft(21)
Note that 80+i0 has become 0-80i due to the predicted phase shift of e^{-i\pi/2}
Obviously, the only way to properly "prove" that theorem is mathematically.
The scaling one you have to be careful with in discrete-time because scaling doesn't work the same with a discrete variable as it does with continuous time.
ong
el 3 de Abr. de 2013
1 comentario
Irfan Ali Dahani
el 19 de En. de 2021
visit and you will get easy made time shifting, time scaling and amplitude scaling all in one project. surely both projects will help you.
SHREEVARSHINI R
el 24 de Oct. de 2021
1.Write a MATLAB program to find Fourier transform of the signal Ate-btu(t)
2.Write a MATLAB program to perform amplitude scaling, time scaling and time shift on the signal x(t) = 1+t; for t=0 to 2
0 comentarios
Sk Group
el 25 de Oct. de 2021
Time shifting Prove: DFT{x(n-l)} = X(K)e^(-j(2*pi/N)kl
For complete detailed post visit: https://www.swebllc.com/time-shifting-property-in-matlab-complete-prove-code-output/
1 comentario
Sk Group
el 25 de Oct. de 2021
For detailed post with complete code visit: https://www.swebllc.com/time-scaling-in-matlab-code-output/
0 comentarios
Ver también
Categorías
Más información sobre Fourier Analysis and Filtering en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!