FFT to convert time series data into frequency domain
82 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
THONTI BEERAIAH
el 16 de Dic. de 2020
Comentada: THONTI BEERAIAH
el 5 de Ag. de 2023
I have an amplitude data of time series(2000 samples) in a file now I need to convert that into a frequency domain so that to configure at which frequencies peak amplitudes occur. here I am attaching my data file(.txt) please help me to write a code for this
0 comentarios
Respuesta aceptada
Star Strider
el 16 de Dic. de 2020
Experiment with this:
s = readmatrix('dec.txt');
L = numel(s); % Signal Length
Fs = 1E+9; % Make Up Sampling Frequency & Units (Hz)
Fn = Fs/2; % Nyquist Frequency
t = linspace(0, 1, L)/Fs; % Make Up Time Vector
figure
plot(t, s)
grid
xlabel('Time (s)') % Make Up Frequency Units
ylabel('Amplitude (parsecs)') % Make Up Amplitude Units
FTs = fft(s - mean(s))/L; % Subtract Mean To See Other Peaks
Fv = linspace(0, 1, fix(L/2)+1)*Fn; % Frequency Vector
Iv = 1:numel(Fv); % Index Vector
figure
plot(Fv, abs(FTs(Iv))*2)
grid
xlabel('Frequency (Hz)')
ylabel('Amplitude (parsecs)')
.
0 comentarios
Más respuestas (1)
Mathieu NOE
el 16 de Dic. de 2020
hi
my little code :
clc
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% FFT parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
NFFT = 4096; %
OVERLAP = 0.75;
% spectrogram dB scale
spectrogram_dB_scale = 80; % dB range scale (means , the lowest displayed level is XX dB below the max level)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% options
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% if you are dealing with acoustics, you may wish to have A weighted
% spectrums
% option_w = 0 : linear spectrum (no weighting dB (L) )
% option_w = 1 : A weighted spectrum (dB (A) )
option_w = 0;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% load signal
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% data
% data = readmatrix('data.txt');
% alternative (older) method for txt ascii files
fid = fopen('data.txt','r')
[data,samples] = fscanf(fid, '%12f');
fclose(fid);
Fs = 1000; % sampling frequency (Hz)
channel = 1;
signal = data(:,channel);
samples = length(signal);
%% decimate (if needed)
% NB : decim = 1 will do nothing (output = input)
decim = 2;
if decim>1
signal = decimate(signal,decim);
Fs = Fs/decim;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% display 1 : averaged FFT spectrum
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[freq, sensor_spectrum] = myfft_peak(signal,Fs,NFFT,OVERLAP);
% convert to dB scale (ref = 1)
sensor_spectrum_dB = 20*log10(sensor_spectrum);
% apply A weigthing if needed
if option_w == 1
pondA_dB = pondA_function(freq);
sensor_spectrum_dB = sensor_spectrum_dB+pondA_dB;
my_ylabel = ('Amplitude (dB (A))');
else
my_ylabel = ('Amplitude (dB (L))');
end
figure(1),plot(freq,sensor_spectrum_dB,'b');grid
title(['Averaged FFT Spectrum / Fs = ' num2str(Fs) ' Hz / Delta f = ' num2str(freq(2)-freq(1)) ' Hz ']);
xlabel('Frequency (Hz)');ylabel(my_ylabel);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% display 2 : time / frequency analysis : spectrogram demo
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[sg,fsg,tsg] = specgram(signal,NFFT,Fs,hanning(NFFT),floor(NFFT*OVERLAP));
% FFT normalisation and conversion amplitude from linear to dB (peak)
sg_dBpeak = 20*log10(abs(sg))+20*log10(2/length(fsg)); % NB : X=fft(x.*hanning(N))*4/N; % hanning only
% apply A weigthing if needed
if option_w == 1
pondA_dB = pondA_function(fsg);
sg_dBpeak = sg_dBpeak+(pondA_dB*ones(1,size(sg_dBpeak,2)));
my_title = ('Spectrogram (dB (A))');
else
my_title = ('Spectrogram (dB (L))');
end
% saturation of the dB range :
% saturation_dB = 60; % dB range scale (means , the lowest displayed level is XX dB below the max level)
min_disp_dB = round(max(max(sg_dBpeak))) - spectrogram_dB_scale;
sg_dBpeak(sg_dBpeak<min_disp_dB) = min_disp_dB;
% plots spectrogram
figure(2);
imagesc(tsg,fsg,sg_dBpeak);colormap('jet');
axis('xy');colorbar('vert');grid
title([my_title ' / Fs = ' num2str(Fs) ' Hz / Delta f = ' num2str(fsg(2)-fsg(1)) ' Hz ']);
xlabel('Time (s)');ylabel('Frequency (Hz)');
function pondA_dB = pondA_function(f)
% dB (A) weighting curve
n = ((12200^2*f.^4)./((f.^2+20.6^2).*(f.^2+12200^2).*sqrt(f.^2+107.7^2).*sqrt(f.^2+737.9^2)));
r = ((12200^2*1000.^4)./((1000.^2+20.6^2).*(1000.^2+12200^2).*sqrt(1000.^2+107.7^2).*sqrt(1000.^2+737.9^2))) * ones(size(f));
pondA = n./r;
pondA_dB = 20*log10(pondA(:));
end
function [freq_vector,fft_spectrum] = myfft_peak(signal, Fs, nfft, Overlap)
% FFT peak spectrum of signal (example sinus amplitude 1 = 0 dB after fft).
% Linear averaging
% signal - input signal,
% Fs - Sampling frequency (Hz).
% nfft - FFT window size
% Overlap - buffer overlap % (between 0 and 0.95)
samples = length(signal);
% fill signal with zeros if its length is lower than nfft
if samples<nfft
s_tmp = zeros(nfft,1);
s_tmp((1:samples)) = signal;
signal = s_tmp;
end
% window : hanning
window = hanning(nfft);
window = window(:);
% compute fft with overlap
offset = fix((1-Overlap)*nfft);
spectnum = 1+ fix((samples-nfft)/offset); % Number of windows
% % for info is equivalent to :
% noverlap = Overlap*nfft;
% spectnum = fix((samples-noverlap)/(nfft-noverlap)); % Number of windows
% main loop
fft_spectrum = 0;
for i=1:spectnum
start = (i-1)*offset;
sw = signal((1+start):(start+nfft)).*window;
fft_spectrum = fft_spectrum + (abs(fft(sw))*4/nfft); % X=fft(x.*hanning(N))*4/N; % hanning only
end
fft_spectrum = fft_spectrum/spectnum; % to do linear averaging scaling
% one sidded fft spectrum % Select first half
if rem(nfft,2) % nfft odd
select = (1:(nfft+1)/2)';
else
select = (1:nfft/2+1)';
end
fft_spectrum = fft_spectrum(select);
freq_vector = (select - 1)*Fs/nfft;
end
Ver también
Categorías
Más información sobre Spectral Measurements en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!