Find peaks/valleys of a noisy signal
    20 visualizaciones (últimos 30 días)
  
       Mostrar comentarios más antiguos
    
    Jay Vaidya
      
 el 18 de Dic. de 2020
  
    
    
    
    
    Comentada: Image Analyst
      
      
 el 19 de Dic. de 2020
            I have this signal which is noisy as well as it has too much data samples. When I try to find the peaks or valleys, it gives multiple peaks/valleys around the same point probably because the data is noisy and has too many samples. I did use the 'MinPeakDistance' and also tried using the 'MinPeakHeight' and also the 'Threshold' but all time I get many peaks's around a given time instant. In other words, I would want only one peak at the peak of the signal and one valley at the trough of the signal. I have the data attached to the post too. Thanks in advance. 
It is just a two column data and I plot the 2nd column wrt 1st one. I would prefer to measure valleys and I would actually need both. 
[pks locs] = findpeaks(data_compact(:,2),'MinPeakHeight',0.992*max(data_compact(:,2)),'MinPeakDistance',5000e-3); % peaks
data_inverted(:,1) = data_compact(:,1);
data_inverted(:,2) = -data_compact(:,2);
%[valley valleys_locs] = findpeaks(data_inverted(:,2),'MinPeakDistance',0.2e-3); % valleys

7 comentarios
  Walter Roberson
      
      
 el 18 de Dic. de 2020
				No-one knows what your data means, or who or what it was created from. It is therefore difficult to "misuse".
Respuesta aceptada
  Image Analyst
      
      
 el 18 de Dic. de 2020
        
      Editada: Image Analyst
      
      
 el 19 de Dic. de 2020
  
      Try this:
clc;    % Clear the command window.
clear all;
close all;
workspace;  % Make sure the workspace panel is showing.
format short g;
format compact;
fontSize = 22;
fprintf('Beginning to run %s.m ...\n', mfilename);
%--------------------------------------------------------------------------------------------------
% Load data from mat file.
s = load('data_compact.mat')
data_compact = s.data;
x = data_compact(:,1);
% Plot data.
plot(x, data_compact(:,2), 'b-');
xlim([x(1), x(end)]);
grid on;
hold on;
%--------------------------------------------------------------------------------------------------
% Smooth with a savitzky-golay filter.  Polynomial order = 2, window width = 351 elements.
smoothY = sgolayfilt(data_compact(:, 2), 2, 351);
plot(x, smoothY, 'r-');
%--------------------------------------------------------------------------------------------------
% Find peaks.  Must be separated by 13000 elements.
[peakValues, indexesOfPeaks, widths, proms] = findpeaks(smoothY, 'MinPeakDistance',13000); % peaks
% Remove an occasional outlier that is below the midpoint.
meanSignal = mean(smoothY);
outlierIndexes = peakValues < meanSignal;
peakValues(outlierIndexes) = [];
indexesOfPeaks(outlierIndexes) = [];
% Plot peaks.
plot(x(indexesOfPeaks), peakValues, 'g.', 'MarkerSize', 30);
%--------------------------------------------------------------------------------------------------
% Find Valleys.  Must be separated by 13000 elements.
[valleyValues, indexesOfValleys] = findpeaks(-smoothY, 'MinPeakDistance', 13000); % valleys
valleyValues = -valleyValues; % Make upright again.
% Remove an occasional outlier that is above the midpoint.
outlierIndexes = valleyValues > meanSignal;
valleyValues(outlierIndexes) = [];
indexesOfValleys(outlierIndexes) = [];
% Plot valleys.
plot(x(indexesOfValleys), valleyValues, 'c.', 'MarkerSize', 30);
message = sprintf('Found %d peaks, and %d valleys', length(indexesOfPeaks), length(indexesOfValleys));
title(message, 'FontSize', fontSize);
% Maximize the figure window.
g = gcf;
g.WindowState = 'maximized'
fprintf('%s\n', message);
uiwait(helpdlg(message));
fprintf('Done running %s.m ...\n', mfilename);

6 comentarios
Más respuestas (1)
  Image Analyst
      
      
 el 18 de Dic. de 2020
        If there is noise on your peaks, have you tried sgolayfilt() with order 2 or 3?  It's in the Signal Processing Toolbox.
Ver también
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!




