signal to noise ratio (SNR)

136 visualizaciones (últimos 30 días)
muhammad nur adri nawi
muhammad nur adri nawi el 14 de En. de 2021
Respondida: sofia el 22 de Mayo de 2024
How does matlab measure snr of an audio signal?
Why i got negative value of SNR in matlab, Because if i measure using sound level meter in real life the snr of an audio should be high?

Respuesta aceptada

Daniel Pollard
Daniel Pollard el 15 de En. de 2021
According to the documentation,
"r = snr(x,y) returns the signal-to-noise ratio (SNR) in decibels of a signal, x, by computing the ratio of its summed squared magnitude to that of the noise, y. y must have the same dimensions as x. Use this form when the input signal is not necessarily sinusoidal and you have an estimate of the noise."
In other words,
r can be negative because it's measured in dB, so if the sum of the squares of the noise y exceeds the sum of the squares of the signal x, the argument of the logarithm is between 0 and 1, so the logarithm is negative.
  2 comentarios
muhammad nur adri nawi
muhammad nur adri nawi el 15 de En. de 2021
thank you
muhammad nur adri nawi
muhammad nur adri nawi el 15 de En. de 2021
Thank you for answering my question, i have one more question sir.
If i got negative value of SNR does it mean the signal quality is low ? And how to measure noise level of a noise audio signal ? Did using fvtool function will help ?

Iniciar sesión para comentar.

Más respuestas (1)

sofia
sofia el 22 de Mayo de 2024
The purpose of the work is the theoretical and experimental study, with the use of simulation in Matlab, the performance of a digital telecommunication system. We consider it below Digital Telecommunication System model A sequence of bits appears at the input of the system. To improve its performance system, based on the average bit error probability criterion, you will implement a simple channel coding which is repetition coding. According to her repeating the same bit of information multiple times. Specifically, every bit that reaches the encoder input is repeated N times (where N ϵ {1,3,…,}). The output of the encoder goes as an input to the digital modulator where the matching is done of the input bits to the input symbols, in the following way Bit Symbol
0 +𝐴
1 -A 𝑃𝑒 = 𝑄 (√ 𝐸𝑠/ 𝜎𝑤 ^2 ), 𝐸𝑠 = 𝐴 2 , PΒ = Pe Next, demodulation takes place where the received symbols are mapped to bit using the previous table. In the end, her procedure is carried out decoding according to which in each N symbols used during coding, the number of aces and zeroes is counted and a decision is made in favor of the digit that appears most times. To calculate the mean (experimental) bit error probability (BEP) relation can be used PB = Fe/ 2 Note that Es=2Eb, where Eb is the average bit energy. For the corresponding mean calculation of bit error probability using coding you will use the previous relation to combined with the fact that a Binomial random variable is created. Specifically, we have one sequence of N independent Bernoulli trials with an equal probability of "success" in each of them with PB. Need to calculate the cumulative probability of ⌈ occurring 𝛮 /2 ⌉,⌈ 𝛮 /2 ⌉ + 1, … , 𝛮 bit errors. Finally note that (𝑆𝑁𝑅)𝑑𝐵 = 10𝑙𝑜𝑔10 ( 𝐸𝑠/ 𝜎𝑤 ^2)

Categorías

Más información sobre Audio Processing Algorithm Design en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by