How to fit to an infinite series function?
19 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Qili Hu
el 24 de En. de 2021
Comentada: Qili Hu
el 25 de En. de 2021

qt is a dependent variable; t is an independent variable; qe B are undetermined parameters.
syms n t;
x=[0 5 10 15 20 30 45 60 75 90 105 120];
y=[0 3.87 4.62 4.98 5.21 5.40 5.45 5.50 5.51 5.52 5.54 5.53];
plot(x,y,'bo');
hold on
beta0=[39,0.002];
fun=@(beta,xdata) beta(1)*(1-6/(pi^2)*symsum((1/n^2)*exp(-beta(2)*(n^2)*t),n,1,inf))
betafit = nlinfit(x,y,fun,beta0);
plot(x,y,fun,beta0)
However, it does not work well. How to do it in MATLAB? Help me. Many thanks.
0 comentarios
Respuesta aceptada
Vladimir Sovkov
el 24 de En. de 2021
An iterative solution instead of the symbolic one can be more productive this case, like this one
x=[0 5 10 15 20 30 45 60 75 90 105 120];
y=[0 3.87 4.62 4.98 5.21 5.40 5.45 5.50 5.51 5.52 5.54 5.53];
plot(x,y,'bo');
hold on
pause(0.1);
beta0=[39,0.002];
% syms n t
% fun=@(beta,t) beta(1)*(1-6/(pi^2)*symsum((1./n.^2).*exp(-beta(2)*(n.^2).*t),n,1,Inf));
% betafit = nlinfit(x,y,fun,beta0);
beta1=beta0;
delta = 1e-8; % desired objective accuracy
R0=Inf; % initial objective function
for K=1:10000
fun=@(beta,t) beta(1)*(1-6/(pi^2)*sum((1./(1:K)'.^2).*exp(-beta(2)*((1:K)'.^2).*t),1));
[betafit,R] = nlinfit(x,y,fun,beta1);
R = sum(R.^2);
if abs(R0-R)<delta
break;
end
beta1=betafit;
R0 = R;
end
plot(x,fun(betafit,x),'.-r');
xlabel('x');
ylabel('y');
legend('experiment','model');
title(strcat('\beta=[',num2str(betafit),'];----stopped at--','K=',num2str(K)));
5 comentarios
Más respuestas (0)
Ver también
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!