Is it possible to fit multiple data sets in the same 'fit'??

2 visualizaciones (últimos 30 días)
Steven Manz
Steven Manz el 26 de En. de 2021
Respondida: TED MOSBY el 4 de Abr. de 2024
So my dilema is that the code below runs the first fit until 'DiffMinChange' is satisfied and then it moves to the second fit. I want to know if it is possible to operate both fits and then check 'DiffMinChange'. I assume I will need a while statement, but I am not sure how the 'fit' function will react. Any help is appreciated!
% Define first fittype
ft1 = fittype('FitLT1(xdata1, mtrlmod, cgs, cds, cgd0, coxd, vtd, vtdtco, fc, m, wb, nb, a, agd, thetal, thetalr, thetah, thetaltexp, thetahtexp, kfl, kfh, kpl, kph, kflr, kplr, kfltexp, kfhtexp, kpltexp, kphtexp, vtl, vth, vtlr, vtltco, vthtco, vbigd, pvfl, pvfh, slmin, id0, vb, rs, rd, rdr, rdvd, rdvg11, rdvg12, rdtemp1, rdtemp2, rdvdtemp1, rdvdtemp2, rdiode, is_body, kvsg1, kvsg2, nd, temperature, tnom, vk1, vk2, tt, tau, multiplier, p_delta, thetalrtexp, kplrtexp, rdrtemp1, rdrtemp2, rdiodetemp1, rdiodetemp2, vtlrtco, vk1tco, vk2tco, ndtco, kvsg1texp, kvsg2texp)',...
'independent', {'xdata1'},...
'dependent', {'ydata1'},...
'problem', optInfo1.const_vars,...
'coefficients', optInfo1.opt_params);
% Call first fitting function and save the optimized parameter values,
% measurements on goodness of fit, and optimization data.
[fit_result1, gof1, fit_info1] = fit(xdata1, ydata1, ft1, 'problem', optInfo1.const_vals,...
'Lower', optInfo1.lower_bound, 'Upper', optInfo1.upper_bound, 'DiffMinChange', optInfo1.min_diff);
% Define second fittype
ft2 = fittype('FitLT2(xdata2, mtrlmod, cgs, cds, cgd0, coxd, vtd, vtdtco, fc, m, wb, nb, a, agd, thetal, thetalr, thetah, thetaltexp, thetahtexp, kfl, kfh, kpl, kph, kflr, kplr, kfltexp, kfhtexp, kpltexp, kphtexp, vtl, vth, vtlr, vtltco, vthtco, vbigd, pvfl, pvfh, slmin, id0, vb, rs, rd, rdr, rdvd, rdvg11, rdvg12, rdtemp1, rdtemp2, rdvdtemp1, rdvdtemp2, rdiode, is_body, kvsg1, kvsg2, nd, temperature, tnom, vk1, vk2, tt, tau, multiplier, p_delta, thetalrtexp, kplrtexp, rdrtemp1, rdrtemp2, rdiodetemp1, rdiodetemp2, vtlrtco, vk1tco, vk2tco, ndtco, kvsg1texp, kvsg2texp)',...
'independent', {'xdata2'},...
'dependent', {'ydata2'},...
'problem', optInfo2.const_vars,...
'coefficients', optInfo2.opt_params);
% Call second fitting function and save the optimized parameter values,
% measurements on goodness of fit, and optimization data.
[fit_result2, gof2, fit_info2] = fit(xdata2, ydata2, ft2, 'problem', optInfo2.const_vals,...
'Lower', optInfo2.lower_bound, 'Upper', optInfo2.upper_bound, 'DiffMinChange', optInfo2.min_diff);

Respuestas (1)

TED MOSBY
TED MOSBY el 4 de Abr. de 2024
Hi Steven,
I understand that you want to calculate the value of the variable “diffMinChange” after fitting both the datasets.
You can use the while loop implementation as shown below:
% Set initial values for loop control
diffMinChangeCondition1 = false;
diffMinChangeCondition2 = false;
% Define first fittype
ft1 = fittype(...); % Your first fittype definition
% Define second fittype
ft2 = fittype(...); % Your second fittype definition
% Loop until 'DiffMinChange' is satisfied for both fits
while ~ (diffMinChangeCondition1 && diffMinChangeCondition2)
% Call first fitting function and save the optimized parameter values,
[fit_result1, gof1, fit_info1] = fit(xdata1, ydata1, ft1, 'problem', optInfo1.const_vals,...
'Lower', optInfo1.lower_bound, 'Upper', optInfo1.upper_bound, 'DiffMinChange', optInfo1.min_diff);
% Call second fitting function and save the optimized parameter values,
[fit_result2, gof2, fit_info2] = fit(xdata2, ydata2, ft2, 'problem', optInfo2.const_vals,...
'Lower', optInfo2.lower_bound, 'Upper', optInfo2.upper_bound, 'DiffMinChange', optInfo2.min_diff);
% Check if DiffMinChange condition is satisfied for both fits
diffMinChangeCondition1 = fit_info1.DiffMinChange < optInfo1.min_diff;
diffMinChangeCondition2 = fit_info2.DiffMinChange < optInfo2.min_diff;
end
This is one of the ways of doing it. Feel free to modify the code according to your needs. Hope it helps!

Categorías

Más información sobre Linear and Nonlinear Regression en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by