The Treebagger give different results in 2012a and 2013a
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
I used
B = TreeBagger(NTrees(j),train_feats',train_labels');
and
Y = predict(B,test_feats');
to classification, in train_feats each column is a sample,the train_labels total of 30 categories,label from 0 to 29.
when I run the code in matlab 2012a the accuracy almost 90%,but when i update to 2013a the accuracy is less than 1%. The data and the code are intact, why the result is so different?
Does anyone have an explanation?
0 comentarios
Respuesta aceptada
Tom Lane
el 23 de Abr. de 2013
This might be the explanation, and it includes a suggestion of how to avoid the problem:
http://www.mathworks.com/support/bugreports/927692
Más respuestas (0)
Ver también
Categorías
Más información sobre Classification Ensembles en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!