how to solve ode and get the value at a perticular value

1 visualización (últimos 30 días)
i am designing the model of a bldc motor in which i need to solve some ode which are time varying. i don't know which matlab syntax will b helpful for me. kindly, suggest. my code is
X=[x1;x2;x3;x4;x5]; Xnew=A*X;
where A is a 5X5 matrix which is dynamic means varies with every iteration. and the initial conditions X(0) also varies with every iteration. how to solve these equations??

Respuesta aceptada

Jan
Jan el 29 de Abr. de 2013
It is not clear, what this means:
the initial conditions X(0) also varies with every iteration
Which iteration?
To solve the ODE use ODE45, if the problem is not stiff. The documentation doc ode45 contains useful examples.
  1 comentario
jasaswini mohanty
jasaswini mohanty el 29 de Abr. de 2013
ok thank u sir... here m posting my code.. t=1:0.001:2; Vmax=40; f=50;
increment=0.001; Va=Vmax*sin(2*pi*f*t); plot(t,Va,'r') hold on Vb=Vmax*sin(((2*pi*f*t)-(2*pi/3))); plot(t,Vb,'y') hold on
Vc=Vmax*sin(((2*pi*f*t)+(2*pi/3))); plot(t,Vc,'b') hold on
T=zeros(size(Va)); % for no load......
Xold=[0;0;0;0.2];
theta0=0.1; B=[117.65 0 0 0;0 117.65 0 0;0 0 117.65 0;0 0 0 11.24]; C=[1 0 0 0;0 1 0 0;0 0 1 0]; D=[0 0 0 0;0 0 0 0;0 0 0 0];
for i=1:1:5 U=[Va(i);Vb(i);Vc(i);T(i)];
if (theta0<0) theta0=360+theta0; disp('theta0=') disp(theta0)
end
%definition of fa................................
if (0<theta0&& theta0<=120)
fa=1;
elseif (120<theta0 && theta0<=180)
fa=(6*(180-theta0)/180)-1;
elseif (180< theta0 && theta0<=300)
fa=-1;
elseif (300<theta0 && theta0<=360)
fa=(6*(theta0-360)/180)+1;
end
f1(i)=fa;
%definition of fb................................
if (0<theta0 &&theta0<=60 || 300<=theta0 && theta0 <=360)
fb=-1;
elseif (60<theta0&&theta0<=120)
fb=(6*(theta0-60)/180)-1;
elseif (120<theta0 && theta0<=240)
fb=1;
elseif (240<theta0 && theta0<=300)
fb=1-(6*(theta0-240)/180);
end
f2(i)=fb;
%definition of fc..................................
if (0<theta0&&theta0<=60)
fc=1-(theta0/30);
elseif (60<theta0&&theta0<=180)
fc=-1;
elseif (180<theta0 && theta0<=240)
fc=((theta0-180)/30)-1;
elseif (240<theta0&& theta0<=360)
fc=1;
end
f3(i)=fc;
A=[-23.53 0 0 -17247.965*fa;0 -23.53 0 -17247.965*fb;0 0 -23.53 -17247.965*fc;1647.3*fa 1647.3*fb 1647.3*fc -0.0562]; disp('A=') disp(A)
end
now that i have A matrix and initial condition with me i want to find the solution for every states. and the initial condition varies in every time step. means at t=0 whatever is the value of the states that will b the initial condition for next time step. i hope this time my problem statement is clear.

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Symbolic Math Toolbox en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by