Forecasting / Input response series data must be non-empty and a column vector.
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Hello i am trying to creat a simple forecasting algo for long terms (foraward 10 yrs based on the data from yrs back ) so my code is below, when i run it, i got this error
Input response series data must be non-empty and a column vector.
Error in Untitled2 (line 18)
EstMdl = estimate(Mdl,data);
Please some help guys.
.
.
.
load data
yrs = evolutiondelademand.VarName1;
demand = evolutiondelademand.VarName2;
A= [yrs,demand];
data = iddata(A,[]);
plot (yrs,demand)
%%figure
plot(yrs,demand)
xlabel('years')
ylabel('demand')
past_data = data.OutputData(1:50);
Mdl = arima(2,0,0);
opt = forecastOptions('InitialCondition','e');
K = 100;
EstMdl = estimate(Mdl,data);
[yF,yMSE] = forecast(EstMdl,60,'Y0',data);
legend('Measured','Forecasted')
0 comentarios
Respuestas (1)
Pavl M.
el 21 de Nov. de 2024
Editada: Pavl M.
el 21 de Nov. de 2024
%load data
%yrs = evolutiondelademand.VarName1;
%demand = evolutiondelademand.VarName2;
odata = xlsread('TitanX Historical Numbers.xlsx');
Dlength = 88;
ts = 1
time = (0:ts:Dlength-1)' %odata(1:Dlength,1) % Time column (1st column)
demand = odata(1:Dlength,2)
%areTimestampsRegular = isregular(demand)
areTimestampsSorted = issorted(demand)
%w = convert2weekly(odata,Aggregation="mean")
%areTimestampsWRegular = isregular(w,"years")
yrs = double(time)
A= [yrs,demand];
data = iddata(A,[])
figure
plot(yrs,demand)
xlabel('years')
ylabel('demand')
title('InputData')
Npastsamples = 50;
past_data = data.OutputData(1:Npastsamples);
%nMdl0 = nlarx(data, [2 2 1;2 2 1])
Mdl0 = arima(3,2,1)
Mdl = gjr(9,21)
Mdl2 = garch(Constant=0.05,GARCH=0.91,ARCH=0.04) %Stationary Model
opt = forecastOptions('InitialCondition','e');
K = 100;
Nhor = 60; %actual forecasting horizon
rng("default") % For reproducibility
[vS,yS] = simulate(Mdl2,50)
figure
plot(vS)
figure
plot(yS)
y0 = yS(1);
v0 = vS(1);
y = yS(2:end);
v = vS(2:end);
res = infer(Mdl2,y) % Retrieve inferred residuals
figure
plot(res)
foreValues2 = forecast(Mdl2,Npastsamples,'Y0',demand) % forecast
figure
plot(foreValues2)
data(:,1)'
EstMdl = estimate(Mdl0,demand);
[yF,MSEError] = forecast(EstMdl,Nhor,'Y0',demand)
tn = [yrs; (yrs(end):1:yrs(end)+Nhor-1)']
figure
plot(tn,[demand; zeros(1,Nhor)'],'b',tn,[zeros(1,Dlength)'; yF],'g')
xlabel('years')
ylabel('demand')
title('Historical in blue and Forecast in green')
figure
plot(tn,[demand; yF])
xlabel('years')
ylabel('demand')
title('Merged Historical and Forecast Data')
%Green curve after input max year Dlength=88 is predicted(forseen,anticipated),
% so the predictions/forecast are correct
% correct )))
0 comentarios
Ver también
Categorías
Más información sobre Conditional Mean Models en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!