Newton's method for two variable functions
8 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
sanyer
el 13 de Feb. de 2021
Comentada: sanyer
el 13 de Feb. de 2021
I have a problem in which I'm supposed to solve a system using Newton's method, but my function gives the same x and y as an output as I give to it as an input. How do I fix this?
function [x, y] = newton3(x,y)
for N = 1:30
D = inv([4*x^3-2*y^5 4*y^3-10*x*y^4; 6*x^5+2*x 4*y^3]);
f = x^4+y^4-2*x*y^5 ;
g = x^6+x^2+y^4-4 ;
z = [x y]' ;
z = z - D*[f g]' ;
x = z(1)
y = z(2)
end
end
0 comentarios
Respuesta aceptada
Alan Stevens
el 13 de Feb. de 2021
Editada: Alan Stevens
el 13 de Feb. de 2021
It depends on your initial guesses. Some work, some don't (not unusual for Newton's method!): Also, better practice to set D to be the Jacobian, rather than its inverse, then use backslash division in the iteration see below:
x = 2; y = 2;
[x,y] = newton3(x,y);
disp([x y])
disp([x^4+y^4-2*x*y^5 x^6+x^2+y^4-4 ])
function [x, y] = newton3(x,y)
for N = 1:30
D = [4*x^3-2*y^5 4*y^3-10*x*y^4; 6*x^5+2*x 4*y^3]; %%%%%%%
f = x^4+y^4-2*x*y^5 ;
g = x^6+x^2+y^4-4 ;
z = [x y]' ;
z = z - D\[f g]' ; %%%%%%%%
x = z(1);
y = z(2);
end
end
5 comentarios
Alan Stevens
el 13 de Feb. de 2021
Also, to define the functions you need
f = @(x,y) x^4 ...etc.
and you will need to define functions for dfdx, dfdy etc. if you are not using the Symbolic toolbox.
Más respuestas (0)
Ver también
Categorías
Más información sobre Systems of Nonlinear Equations en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!