Bestfit value doesn't match with the plotted value
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
Vaswati Biswas
el 23 de Feb. de 2021
Comentada: dpb
el 23 de Feb. de 2021
I am using nlinfit to fit a gaussian square function in my data. My code is shown below:
initGuess=[max(g1),500,100]
g1 is my data that needs to be fitted.
gaussian_fn= @(q,x) (q(1)^2.*exp(-2.*((x-q(2)).^2)/q(3).^2));
[bestfit,resid]=nlinfit(x1,g1,gaussian_fn,initGuess);
scatter(x1,g1,'.');
hold on;
A2=gaussian_fn(bestfit,x1);
plot(x1,gaussian_fn(bestfit,x1),'r');
My code gives me the result shown above but the bestfit value shown in the workspace (maked with yellow highlighter ) is different from the value shown in the graph. In graph it shows me 0.9065 whereas bestfit value is 0.9522. Why it is different? why it is not giving me the samevalue shown as bestfit value?
0 comentarios
Respuesta aceptada
dpb
el 23 de Feb. de 2021
Editada: dpb
el 23 de Feb. de 2021
Because you used
gaussian_fn= @(q,x) (q(1)^2.*exp(-2.*((x-q(2)).^2)/q(3).^2));
as your fitting function -- in which q(1) is squared --
>> q=[0.9522,559.2633,425]; % from your screenshot
>> q(1)^2
ans =
0.9067
>>
For comparison,
>> gaussian_fn(q,q(2)) % at peak center is max value
ans =
0.9067
>> gaussian_fn(q,555) % where you evaluated on plot
ans =
0.9065
>>
Use
gaussian_fn= @(q,x) (q(1).*exp(-2.*((x-q(2)).^2)/q(3).^2));
if you want the peak amplitude to be same as coefficient.
4 comentarios
dpb
el 23 de Feb. de 2021
Glad to try to help...
I was going to comment that the Gaussian doesn't do a great job; your peak is flattened and broadened noticeably from a pure Gaussian altho it is pretty-good on a symmetry basis.
Some transformation or alternate distribution form would seem reasonable to use, agreed.
Más respuestas (0)
Ver también
Categorías
Más información sobre Interpolation en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!