How to design LSTM-CNN on deep network designer?
21 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
NurAlisa Ali
el 7 de Mzo. de 2021
Respondida: H W
el 5 de Nov. de 2022
Hello,
My project is on classification of ECG/EEG signals using deep learning. I have design based on sequence on LSTM layer. Now i want to design hybrid LSTM-CNN on deep network designer which i have problem with connection between LSTM and Convolutional layer. I used Sequencefolding layer (suggested by deep network designer) after LSTM and connect to Convolutionallayer2d. The problem is Sequencefolding layer have two output (1. output, 2. minibatchsize) , which i don't now where to connect this minibatchsize connection. Can somebody expert give me advice on this? Really appreciate on any advice.
Thanks in advance sir.
0 comentarios
Respuesta aceptada
Divya Gaddipati
el 10 de Mzo. de 2021
You have to use a sequenceUnfoldingLayer that takes two inputs, feature map and the miniBatchSize from the corresponding sequenceLayer. You can refer to this example for more information.
Más respuestas (2)
Dreaman
el 28 de Mzo. de 2021
i have the same problem too, have u solved this problem?
2 comentarios
Manoj Devaraju
el 9 de Jun. de 2022
Hello Ali,
Evn I would like to apply CNN-LSTM network for the image data set classification problem. But unfortunately i am struggling to apply, can you please give me some insight, how can it be done?
H W
el 5 de Nov. de 2022
% Load data
[XTrain,YTrain] = japaneseVowelsTrainData;
% Define layers
layers = [ sequenceInputLayer(12,'Normalization','none', 'MinLength', 9);
convolution1dLayer(3, 16)
batchNormalizationLayer()
reluLayer()
maxPooling1dLayer(2)
convolution1dLayer(5, 32)
batchNormalizationLayer()
reluLayer()
averagePooling1dLayer(2)
lstmLayer(100, 'OutputMode', 'last')
fullyConnectedLayer(9)
softmaxLayer()
classificationLayer()];
options = trainingOptions('adam', ...
'MaxEpochs',10, ...
'MiniBatchSize',27, ...
'SequenceLength','longest');
% Train network
net = trainNetwork(XTrain,YTrain,layers,options);
0 comentarios
Ver también
Categorías
Más información sobre Get Started with Deep Learning Toolbox en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!