How to design LSTM-CNN on deep network designer?

21 visualizaciones (últimos 30 días)
NurAlisa Ali
NurAlisa Ali el 7 de Mzo. de 2021
Respondida: H W el 5 de Nov. de 2022
Hello,
My project is on classification of ECG/EEG signals using deep learning. I have design based on sequence on LSTM layer. Now i want to design hybrid LSTM-CNN on deep network designer which i have problem with connection between LSTM and Convolutional layer. I used Sequencefolding layer (suggested by deep network designer) after LSTM and connect to Convolutionallayer2d. The problem is Sequencefolding layer have two output (1. output, 2. minibatchsize) , which i don't now where to connect this minibatchsize connection. Can somebody expert give me advice on this? Really appreciate on any advice.
Thanks in advance sir.

Respuesta aceptada

Divya Gaddipati
Divya Gaddipati el 10 de Mzo. de 2021
You have to use a sequenceUnfoldingLayer that takes two inputs, feature map and the miniBatchSize from the corresponding sequenceLayer. You can refer to this example for more information.
  1 comentario
NurAlisa Ali
NurAlisa Ali el 29 de Abr. de 2021
Thank you very much for this sir. From the example given, it is for hybrid CNN-LSTM, what i'm try to design is LSTM-CNN....

Iniciar sesión para comentar.

Más respuestas (2)

Dreaman
Dreaman el 28 de Mzo. de 2021
i have the same problem too, have u solved this problem?
  2 comentarios
NurAlisa Ali
NurAlisa Ali el 29 de Abr. de 2021
Yeah i have try CNN-LSTM, but the input length must be not too long, otherwise will get out of memory even 32GB ram.
Manoj Devaraju
Manoj Devaraju el 9 de Jun. de 2022
Hello Ali,
Evn I would like to apply CNN-LSTM network for the image data set classification problem. But unfortunately i am struggling to apply, can you please give me some insight, how can it be done?

Iniciar sesión para comentar.


H W
H W el 5 de Nov. de 2022
% Load data
[XTrain,YTrain] = japaneseVowelsTrainData;
% Define layers
layers = [ sequenceInputLayer(12,'Normalization','none', 'MinLength', 9);
convolution1dLayer(3, 16)
batchNormalizationLayer()
reluLayer()
maxPooling1dLayer(2)
convolution1dLayer(5, 32)
batchNormalizationLayer()
reluLayer()
averagePooling1dLayer(2)
lstmLayer(100, 'OutputMode', 'last')
fullyConnectedLayer(9)
softmaxLayer()
classificationLayer()];
options = trainingOptions('adam', ...
'MaxEpochs',10, ...
'MiniBatchSize',27, ...
'SequenceLength','longest');
% Train network
net = trainNetwork(XTrain,YTrain,layers,options);

Categorías

Más información sobre Get Started with Deep Learning Toolbox en Help Center y File Exchange.

Productos


Versión

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by