In fourier series, why there should be finite maxima and minima (dirichlet conditions)
5 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
why not infinte number of maxima and minima?
0 comentarios
Respuestas (1)
Walter Roberson
el 14 de Mzo. de 2021
This is not a question about MATLAB. Please use more appropriate resources to investigate fourier theory.
Dirichlet conditions. The function f satisfies the Dirichlet conditions on the interval (–T/2, + T/2) if,(i)
f is bounded on the interval (–T/2, + T/2), and
(ii)
the interval (–T/2, + T/2) may be divided into a finite number of sub-intervals in each of which the derivative f′ exists throughout and does not change sign.
===
If you had an infinite number of maxima or minima then you would not be able to satisfy that there are a finite number of sub-intervals in each of which the derivative does not change sign. Each maxima or minima requires a sign change for the derivative.
0 comentarios
Ver también
Categorías
Más información sobre Fourier Analysis and Filtering en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!