Solving vectorized ODE (Solving same ODE with many initial conditions at once).

9 visualizaciones (últimos 30 días)
I am tring to apply 2nd newton law to many points, where m,r,v,f is a n-by-1, n-by-3, n-by-3, n-by-3, n-by-3, matrixes for mass, position,velocity, and force for n points. The 3 columns are the x,y,z components for those values.
options = odeset('Vectorized','on');
y0=[r,v];
[t,YSol]=ode45(@(t,y) MotionODE(t,y,m,f),[0,dt],y0,options);
r=YSol(t==dt,1:3)';
v=YSol(t==dt,4:5)';
function d2rdt2= MotionODE(t,Y,m,f)
%ODE function for motion
r=Y(:,1:3);
v=Y(:,4:5);
drdt=v;
dvdt=f./m;
d2rdt2=[drdt,dvdt];
end
However I got an error: "Index in position 2 exceeds array bounds (must not exceed 1).". Is the option "vectorized" designed for what I think it is for? How do I get this run correctly (other than a for loop)?
  1 comentario
Yi-xiao Liu
Yi-xiao Liu el 21 de Mzo. de 2021
Walter's answer was accepted because it answers my original question. But Jan's answer is also informative regarding accuracy of this approach and I encourge everyone to give a read.
I also found this link to be revelant:

Iniciar sesión para comentar.

Respuesta aceptada

Walter Roberson
Walter Roberson el 17 de Mzo. de 2021
r = Y(1,:);
v = Y(2,:);
drdt = v;
dvdt = f./m * ones(size(v));
d2rdt2=[drdt;dvdt];
  3 comentarios
Walter Roberson
Walter Roberson el 17 de Mzo. de 2021
Okay, I misread earlier. 'Vectorized' is not useful for your situation.
%m is n x 1
%r is n x 3
%v is n x 3
%f is n x 3
%the boundary conditions are arranged in memory as
%all of the position x coordinates, then all of the position y, then all
%of the position z, then all of the velocity x, then all of the velocity y,
%then all of the velocity z
y0 = [r,v]; %[n x 3, n x 3] --> n x 6
f_over_m = f ./ m; %n x 3 ./ n x 1 -> n x 3
[t,YSol] = ode45(@(t,y) MotionODE(t, y, f_over_m), [0,dt], y0);
R = reshape(YSol(end,1:end/2), [], 3); %px, py, pz
V = reshape(YSol(end,end/2+1:end), [], 3); %vx, vy, vz
function d2rdt2= MotionODE(t, Y, f_over_m)
%ODE function for motion
Y = reshape(Y, [], 6); %px, py, pz, vx, vy, vz
r = Y(:,1:3); %n x 3
v = Y(:,4:5); %n x 3
drdt = v; %n x 3
dvdt = f_over_m; %n x 3
d2rdt2 = reshape([drdt, dvdt], [], 1); %MUST return column vector
end
Yi-xiao Liu
Yi-xiao Liu el 17 de Mzo. de 2021
it should be v=Y(:,4:6) in the ODE function, which is the mistake I originally made in the question.
Other than that it works great, Thanks!

Iniciar sesión para comentar.

Más respuestas (1)

Jan
Jan el 17 de Mzo. de 2021
same ODE with many initial conditions at once
This is a bad idea. Remember that the step size control is triggered by the most susceptible component of the trajectory. This reduces the stepsize for all components and in consequence increases the accumulated rounding errors. The total number of calculations can be larger than running the integration for each initial value separately.
  4 comentarios
Yi-xiao Liu
Yi-xiao Liu el 18 de Mzo. de 2021
I guess my question is more like how to solve this ODE with different initial conditions independently, as you suggested for better accuracy, while also concurrently?
Using a for loop takes forever and most of the CPU is idel at the time
Jan
Jan el 18 de Mzo. de 2021
Do you have the Parallel Processing Toolbox? Then try to replace the FOR by PARFOR.

Iniciar sesión para comentar.

Categorías

Más información sobre Ordinary Differential Equations en Help Center y File Exchange.

Productos


Versión

R2019b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by