Reduce FFT bins by oversampling

12 visualizaciones (últimos 30 días)
Yannick Pratte
Yannick Pratte el 28 de Mzo. de 2021
Comentada: William Rose el 29 de Mzo. de 2021
We measured the voltage output of a rotating machine (generator) which base frequency is 60 Hz. The acquisition sampling is 20 kHz. The generator frequency is varying in time (can be 60.1, 59.9, etc). My recording length is several minutes and I would like to trace the output frequency of the voltage over the time.
I made a sliding windows where I calculate an FFT over 2*334=668 samples, corresponding to 33.4 msec of approximately 2 cycles at 60 Hz.
With the FFT function, I am not able to acheive the precision of 1/10 Hz.
The frequency bins are 29.94 Hz, 59.88 Hz, 89.82 Hz, for a windows 2 cycles. In order to refine the bins, I will have to enlarge the windows, but it becomes so large that a fluctuation is no longer visible.
Am I missing something?
Is there another method that could be more suitable for the application?
load Va.mat %Contains the variable which is the generator output voltage
T = 50e-6; % Sampling period
Fs = 1/T; % Sampling frequency
L = 2*334; % Length of signal
t = (0:L-1)*T; % Time vector
iter = 5000; %Number of windows
sig = zeros(iter,3);
for i = 1:1:iter
S = Gen_volt_output(i:L+i-1,1); %Sample to be analysed
f = Fs*(0:(L/2))/L; %Freq. bins
Y = fft(S);
P2 = abs(Y/L);
P1 = P2(1:L/2+1);
P1(2:end-1) = 2*P1(2:end-1);
[max_val,index] = max(P1);
frequence = f(index);
sig(i,1) = i;
sig(i,2) = frequence;
sig(i,3) = max_val/sqrt(2);
end
subplot(2,1,1)
plot(sig(:,2))
subplot(2,1,2)
hold on
plot(sig(:,3))
plot(Gen_volt_output(1:iter))
hold off

Respuesta aceptada

William Rose
William Rose el 28 de Mzo. de 2021
When you do a standard FFT, the output frequency spacing is df=1/T where T is the duration of the sample. To get resolution of 0.1 Hz, you need a 10 second long sample. You would need even longer, if you use Welch's method, pwelch(). (Read the help for more on pwelch() is desired.) Since you have sampled the signal at a high rate, I recommend measuring the time between successive upward-sloping zero crossings, and taking the reciprocal of that interval to estimate the frequency of each cycle. Or find T2cross=time between every second positive-sloped zero crossing. Then f=2/(T2cross).
Of course this will not be exactly correct if the baseline is drifting or if the signal is not centered on zero, so adjust accordingly, if needed.
  3 comentarios
Yannick Pratte
Yannick Pratte el 28 de Mzo. de 2021
Thanks! That works!
William Rose
William Rose el 29 de Mzo. de 2021
You're welcome @Yannick Pratte

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Spectral Measurements en Help Center y File Exchange.

Etiquetas

Productos


Versión

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by