How to create a curve fit for my data?
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
Arpad Takacs
el 8 de Abr. de 2021
Comentada: Star Strider
el 8 de Abr. de 2021
I have the following function:
. How can I create a curve fit for my data points?
0 comentarios
Respuesta aceptada
Star Strider
el 8 de Abr. de 2021
Assuming you have a vector of ‘T’ values that are functions of ‘s’, ‘g’ is given and the parameter to be estimated is ‘x’:
Tfcn = @(x,s,g) 2*pi*sqrt((x+s.^2)./(g.*s)); % Objective Function
s = 1:20; % Create Data
T = rand(size(s))*10; % Create Data
g = 9.81;
X0 = 1;
X = fminsearch(@(x) norm(T - Tfcn(x,s,g)), X0); % Estimate Parameters
figure
plot(s, T, '.')
hold on
plot(s, Tfcn(X,s,g), '-r')
hold off
grid
.
2 comentarios
Star Strider
el 8 de Abr. de 2021
As always, my pleasure!
If you have the Statistics and Machine Learning Toolbox, use the fitnlm function (introduced in R2013b). It will provide confidence limits on the parameters automatically, and the ‘Tfcn’ will work with it, with one small change in the calling syntax:
mdl - fitnlm(s, T, @(x,s)Tfcn(x,s,g), X0)
Then see the fitnlm documentation I linked to to understand how to get even more information from the ‘mdl’ variable and associated functions.
The nlinfit function is also an option (with the same calling syntax as for fitnlm) for ‘Tfcn’. See that documentation and related functions such as nlparci and nlpredci (linked to in that documentation).
Más respuestas (0)
Ver también
Categorías
Más información sobre Get Started with Curve Fitting Toolbox en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!