Remaining Usefull Time - Predict RUL not working on ThingSpeak

1 visualización (últimos 30 días)
Aniket Manjare
Aniket Manjare el 18 de Abr. de 2021
Editada: ricardo arias el 30 de Sept. de 2021
I can succesfulkly run the code on Matlab but ,it shows error while running on ThingSpeak.
I really dont understan whats wrong, can you help me
error i am getting on Thingspeak Matlab Analysis
Warning: While loading an object of class 'linearDegradationModel':
Unrecognized field name "AlphaLevel".
> In MATLABAnalysis>getValues (line 50)
In MATLABAnalysis (line 34)
Error using rulModel/predictRUL (line 269)
Operands to the logical and (&&) and or (||) operators must be convertible to logical scalar values.
Error in MATLABAnalysis>getValues (line 62)
[estTTS, CITTS, pdfTTS] = predictRUL(T.mdl{failureMode},[-NaN healthIndicator],threshold);
Error in MATLABAnalysis (line 34)
[estTTS,healthIndicator,threshold,EmailAlertFlag] = getValues(features, out,dropBoxAccessToken, IFTTTURL, secondChID,thresholdTTS,labels,secondReadAPIKey) %Get the others values to be written on
second channel
  3 comentarios
Aniket Manjare
Aniket Manjare el 21 de Abr. de 2021
Sure,
Well My project is Condition based predictive Maintenece of Motor by Vibration signal Analysis tecniques. our aim is to real time fault identification and predict the threshold before that need to be taken action by maintenece team.
function [estTTS,healthIndicator,threshold,EmailAlertFlag] = getValues(features, out,dropBoxAccessToken, IFTTTURL, secondChID,thresholdTTS,labels,readKey)
if(out == 0 || out == 1) %Don't need Predictive Maintenance during normal operation
estTTS = NaN;
healthIndicator = NaN;
threshold = NaN;
else
rawdata = downloadFromDropbox(dropBoxAccessToken,'Fan TTS Model.mat');
f = fopen('Fan TTS Model.mat','w');
fwrite(f,rawdata);
fclose(f);
T = load('Fan TTS Model.mat');
failureMode = out - 1 ;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%1 to 0 then dutct block work
if(out ==2)
failureMode = 2;
else
failureMode = out - 1;
end
if(length(T.selectedFeatures{failureMode})==1)
healthIndicator = table2array(features(:,T.selectedFeatures{failureMode}));
threshold = T.threshold{failureMode};
[estTTS, CITTS, pdfTTS] = predictRUL(T.mdl{failureMode},[-NaN healthIndicator],threshold);
estTTS = estTTS*T.conversion{failureMode};
CITTS = CITTS*T.conversion{failureMode};
pdfTTS.TTS = pdfTTS.RUL*T.conversion{failureMode};
else
selectedFeatures = features(:,T.selectedFeatures{failureMode});
healthIndicator = (selectedFeatures{:,:} - T.meanTrain{failureMode}) ./ T.sdTrain{failureMode} * T.pcaCoeff{failureMode}(:, 1);
threshold = T.threshold{failureMode};
[estTTS, CITTS, pdfTTS] = predictRUL(T.mdl{failureMode},[-NaN healthIndicator],threshold);
estTTS = estTTS*T.conversion{failureMode};
CITTS = CITTS*T.conversion{failureMode};
pdfTTS.TTS = pdfTTS.RUL*T.conversion{failureMode};
end
end
end
ricardo arias
ricardo arias el 30 de Sept. de 2021
Editada: ricardo arias el 30 de Sept. de 2021
Can I use your code to predict the RUL with a file like this:
Only for VelB2 (Velocity in Bearing 2, in in/s). Threshold 0.351 in/s.
Could you help me with this??
Thanks

Iniciar sesión para comentar.

Respuestas (0)

Comunidades de usuarios

Más respuestas en  ThingSpeak Community

Categorías

Más información sobre Food Sciences en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by