cannot find the funcion "generateTargets"
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
xinyi shen
el 23 de Abr. de 2021
Comentada: arindam mondal
el 22 de Feb. de 2022
Hello there,
I am trying to replicate the yolov3 example here. However, I cannot find a utility function, generateTargets.
which is called in modelGradients, another utility function. Please help.
I am using matlab r2021a
Thanks
% Generate target for predictions from the ground truth data.
[boxTarget, objectnessTarget, classTarget, objectMaskTarget, boxErrorScale] = generateTargets(gatheredPredictions,...
YTrain, inputImageSize, detector.AnchorBoxes, penaltyThreshold);
4 comentarios
MirPooya Salehi Moharer
el 23 de Mayo de 2021
Thank you. I managed to fix it. Thanks for your time.
Kind regads.
Weiwei Luo
el 15 de Nov. de 2021
I have exactly the same issue. I am using R2020B and R2021A. Open Example does not help. I still cannot find that function. I see it is called in line 216. It was mentined before line 198. But cannot find that function. Would you possible copy it here?
Respuesta aceptada
Cris LaPierre
el 23 de Abr. de 2021
Editada: Cris LaPierre
el 23 de Abr. de 2021
You can open this example in MATLAB using the following code
openExample('deeplearning_shared/ObjectDetectionUsingYOLOV3DeepLearningExample')
On my computer, this corresponds to the following location:
C:\Users\userName\Documents\MATLAB\Examples\R2021a\deeplearning_shared\ObjectDetectionUsingYOLOV3DeepLearningExample
When I navigate to that folder, generateTargets is there. Note that this folder is not added to your path automatically. You will need to either make that folder your current folder, or add it to your path before the example can be run. When you use the command above to open the example, it automatically changes the current folder.
Más respuestas (1)
Weiwei Luo
el 23 de Nov. de 2021
I wrote the the MATLAB Support team and get the code.
function [boxDeltaTarget, objectnessTarget, classTarget, maskTarget, boxErrorScaleTarget] = generateTargets(YPredCellGathered, groundTruth,...
inputImageSize, anchorBoxes, penaltyThreshold)
% originally at the back of the mlx file as utility function
% generateTargets creates target array for every prediction element
% x, y, width, height, confidence scores and class probabilities.
boxDeltaTarget = cell(size(YPredCellGathered,1),4);
objectnessTarget = cell(size(YPredCellGathered,1),1);
classTarget = cell(size(YPredCellGathered,1),1);
maskTarget = cell(size(YPredCellGathered,1),3);
boxErrorScaleTarget = cell(size(YPredCellGathered,1),1);
% Normalize the ground truth boxes w.r.t image input size.
gtScale = [inputImageSize(2) inputImageSize(1) inputImageSize(2) inputImageSize(1)];
groundTruth(:,1:4,:,:) = groundTruth(:,1:4,:,:)./gtScale;
anchorBoxesSet = cell2mat(anchorBoxes);
maskIdx = 1:size(anchorBoxesSet,1);
cellsz = cellfun(@size,anchorBoxes,'uni',false);
convMask = cellfun(@(v)v(1),cellsz);
anchorBoxMask = mat2cell(maskIdx,1,convMask)';
for numPred = 1:size(YPredCellGathered,1)
% Select anchor boxes based on anchor box mask indices.
anchors = anchorBoxes{numPred, :};
bx = YPredCellGathered{numPred,2};
by = YPredCellGathered{numPred,3};
bw = YPredCellGathered{numPred,4};
bh = YPredCellGathered{numPred,5};
predClasses = YPredCellGathered{numPred,6};
gridSize = size(bx);
if numel(gridSize)== 3
gridSize(4) = 1;
end
numClasses = size(predClasses,3)./size(anchors,1);
% Initialize the required variables.
mask = single(zeros(size(bx)));
confMask = single(ones(size(bx)));
classMask = single(zeros(size(predClasses)));
tx = single(zeros(size(bx)));
ty = single(zeros(size(by)));
tw = single(zeros(size(bw)));
th = single(zeros(size(bh)));
tconf = single(zeros(size(bx)));
tclass = single(zeros(size(predClasses)));
boxErrorScale = single(ones(size(bx)));
% Get the IOU of predictions with groundtruth.
iou = getMaxIOUPredictedWithGroundTruth(bx,by,bw,bh,groundTruth);
% Donot penalize the predictions which has iou greater than penalty
% threshold.
confMask(iou > penaltyThreshold) = 0;
for batch = 1:gridSize(4)
truthBatch = groundTruth(:,1:5,:,batch);
truthBatch = truthBatch(all(truthBatch,2),:);
% Get boxes with center as 0.
gtPred = [0-truthBatch(:,3)/2,0-truthBatch(:,4)/2,truthBatch(:,3),truthBatch(:,4)];
anchorPrior = [0-anchorBoxesSet(:,2)/(2*inputImageSize(2)),0-anchorBoxesSet(:,1)/(2*inputImageSize(1)),anchorBoxesSet(:,2)/inputImageSize(2),anchorBoxesSet(:,1)/inputImageSize(1)];
% Get the iou of best matching anchor box.
overLap = bboxOverlapRatio(gtPred,anchorPrior);
[~,bestAnchorIdx] = max(overLap,[],2);
% Select gt that are within the mask.
index = ismember(bestAnchorIdx,anchorBoxMask{numPred});
truthBatch = truthBatch(index,:);
bestAnchorIdx = bestAnchorIdx(index,:);
bestAnchorIdx = bestAnchorIdx - anchorBoxMask{numPred}(1,1) + 1;
if ~isempty(truthBatch)
% Convert top left position of ground-truth to centre coordinates.
truthBatch = [truthBatch(:,1)+truthBatch(:,3)./2,truthBatch(:,2)+truthBatch(:,4)./2,truthBatch(:,3),truthBatch(:,4),truthBatch(:,5)];
errorScale = 2 - truthBatch(:,3).*truthBatch(:,4);
truthBatch = [truthBatch(:,1)*gridSize(2),truthBatch(:,2)*gridSize(1),truthBatch(:,3)*inputImageSize(2),truthBatch(:,4)*inputImageSize(1),truthBatch(:,5)];
for t = 1:size(truthBatch,1)
% Get the position of ground-truth box in the grid.
colIdx = ceil(truthBatch(t,1));
colIdx(colIdx<1) = 1;
colIdx(colIdx>gridSize(2)) = gridSize(2);
rowIdx = ceil(truthBatch(t,2));
rowIdx(rowIdx<1) = 1;
rowIdx(rowIdx>gridSize(1)) = gridSize(1);
pos = [rowIdx,colIdx];
anchorIdx = bestAnchorIdx(t,1);
mask(pos(1,1),pos(1,2),anchorIdx,batch) = 1;
confMask(pos(1,1),pos(1,2),anchorIdx,batch) = 1;
% Calculate the shift in ground-truth boxes.
tShiftX = truthBatch(t,1)-pos(1,2)+1;
tShiftY = truthBatch(t,2)-pos(1,1)+1;
tShiftW = log(truthBatch(t,3)/anchors(anchorIdx,2));
tShiftH = log(truthBatch(t,4)/anchors(anchorIdx,1));
% Update the target box.
tx(pos(1,1),pos(1,2),anchorIdx,batch) = tShiftX;
ty(pos(1,1),pos(1,2),anchorIdx,batch) = tShiftY;
tw(pos(1,1),pos(1,2),anchorIdx,batch) = tShiftW;
th(pos(1,1),pos(1,2),anchorIdx,batch) = tShiftH;
boxErrorScale(pos(1,1),pos(1,2),anchorIdx,batch) = errorScale(t);
tconf(rowIdx,colIdx,anchorIdx,batch) = 1;
classIdx = (numClasses*(anchorIdx-1))+truthBatch(t,5);
tclass(rowIdx,colIdx,classIdx,batch) = 1;
classMask(rowIdx,colIdx,(numClasses*(anchorIdx-1))+(1:numClasses),batch) = 1;
end
end
end
boxDeltaTarget(numPred,:) = [{tx} {ty} {tw} {th}];
objectnessTarget{numPred,1} = tconf;
classTarget{numPred,1} = tclass;
maskTarget(numPred,:) = [{mask} {confMask} {classMask}];
boxErrorScaleTarget{numPred,:} = boxErrorScale;
end
end
1 comentario
arindam mondal
el 22 de Feb. de 2022
I cannot find the function 'getMaxIOUPredictedWithGroundTruth'. please help
Ver también
Categorías
Más información sobre Data Preparation Basics en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!