How to calculate the standard error of my linear regression coefficient?

31 visualizaciones (últimos 30 días)
I want to create a linear regression for my data through the origin. My code works fine, but I also need to determine the error of the coefficient K. My y data also has an error of ±0.001 (the x data has not) which have to be taken into account.
x=[-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7];
y=[-9 -7.65 -6.35 -5.05 -3.8 -2.6 -1.2 0 1.1 2.4 3.7 4.9 6.2 7.25 8.35]*0.01;
% Computing fitted line
K = x(:)\y(:);
yfit = x(:)*K;
scatter(x, y)
hold on
plot (x, yfit, '-r')
hold off
K

Respuestas (1)

Star Strider
Star Strider el 24 de Abr. de 2021
You can certainly look this up and calculate it on your own, however using fitlm and predict is easier —
x=[-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7];
y=[-9 -7.65 -6.35 -5.05 -3.8 -2.6 -1.2 0 1.1 2.4 3.7 4.9 6.2 7.25 8.35]*0.01;
% Computing fitted line
K = x(:)\y(:);
yfit = x(:)*K;
mdl = fitlm(x,y,'Intercept',false)
mdl =
Linear regression model: y ~ x1 Estimated Coefficients: Estimate SE tStat pValue ________ __________ ______ __________ x1 0.012436 9.7275e-05 127.84 7.0505e-23 Number of observations: 15, Error degrees of freedom: 14 Root Mean Squared Error: 0.00163
[ypred,yci] = predict(mdl,x(:));
figure
scatter(x, y)
hold on
plot (x, yfit, '-r')
plot(x, yci, '-g')
hold off
K
K = 0.0124

Categorías

Más información sobre Histograms en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by