Solving non-linear equation in vector form

8 visualizaciones (últimos 30 días)
Tayyab Khalil
Tayyab Khalil el 28 de Abr. de 2021
Comentada: Tayyab Khalil el 28 de Abr. de 2021
Hi all, hope you are doing well.
Soi have a simple equation where the known value is a vector. So i need to get a vector as the solution.
The equation is very simple and can be easily caluclated by hand but i require it to be solved using Matlab.
Here is the code i have tried:
u2 = rand(1,1000);
syms t1
eq = t1.^2/64 == u2;
solve(eq, t1)
Any help would be appreciated, thanks.

Respuesta aceptada

Matt J
Matt J el 28 de Abr. de 2021
Editada: Matt J el 28 de Abr. de 2021
If you have the Optimization Toolbox,
u2=[1,4,9];
opts=optimoptions('fsolve','SpecifyObjectiveGradient',true,'OptimalityTolerance',1e-12);
t1=fsolve(@(t1)objfunc(t1,u2),u2,opts)
Equation solved, inaccuracy possible. The vector of function values is near zero, as measured by the value of the function tolerance. However, the last step was ineffective.
t1 = 1×3
8.0000 16.0000 24.0000
function [err, J]=objfunc(t1,u2)
err=t1.^2/64-u2;
J=speye(numel(u2))/32; %Jacobian
end
  1 comentario
Tayyab Khalil
Tayyab Khalil el 28 de Abr. de 2021
Yes that works fine, but is there not a easier way to solve this relatively simple problem?

Iniciar sesión para comentar.

Más respuestas (2)

Matt J
Matt J el 28 de Abr. de 2021
Editada: Matt J el 28 de Abr. de 2021
syms u t
fun=matlabFunction( solve(t^2/64==u,t) );
u2=[1,4,9];
t1=fun(u2)
t1 = 2×3
-8 -16 -24 8 16 24

Matt J
Matt J el 28 de Abr. de 2021
u2 = rand(1,1000);
t1=8*sqrt(u2);
  3 comentarios
Matt J
Matt J el 28 de Abr. de 2021
All the commands in my solution are Matlab commands...
Tayyab Khalil
Tayyab Khalil el 28 de Abr. de 2021
I meant that only putting the equation in its original form in Matlab and making matlab solve it for t1 rather than separting t1 ourself.

Iniciar sesión para comentar.

Categorías

Más información sobre Symbolic Math Toolbox en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by