how can i avoid Nan in matlab expression and return 0

8 visualizaciones (últimos 30 días)
NN
NN el 5 de Mayo de 2021
Comentada: Walter Roberson el 7 de Mayo de 2021
The below three expression gives three different values,
and can someone advice me how can i avoid Nan values for 0 input and return 0 value for it
(sqrt((-220).^2)./-220+1)/2.*(10-5) + 5
(sqrt((220).^2)./220+1)/2.*(10-5) + 5
(sqrt((0).^2)./0+1)/2.*(10-5) + 5
>> (sqrt((-220).^2)./-220+1)/2.*(10-5) + 5
(sqrt((220).^2)./220+1)/2.*(10-5) + 5
(sqrt((0).^2)./0+1)/2.*(10-5) + 5
ans =
5
ans =
10
ans =
NaN
  4 comentarios
Walter Roberson
Walter Roberson el 5 de Mayo de 2021
NN is trying to use Problem Based Optimization for something it was never designed to do, so the straight-forward methods are not available, and instead it is necessary to find some mathematical "cheat" that the Optimization Toolbox will permit.
NN
NN el 5 de Mayo de 2021
:-(
Yes, but how logical comparison can be performed inside optimisation problem ? I am worried if there is no solution for this

Iniciar sesión para comentar.

Respuestas (5)

Matt J
Matt J el 5 de Mayo de 2021
Editada: Matt J el 5 de Mayo de 2021
Replace
sqrt(x.^2)./x
with
sign(x)
  5 comentarios
Matt J
Matt J el 5 de Mayo de 2021
But I removed the sign(X)...
Walter Roberson
Walter Roberson el 5 de Mayo de 2021
Optimization variables cannot do logical multiplication. They can only use comparisons in the context of constraints.

Iniciar sesión para comentar.


Stephen23
Stephen23 el 5 de Mayo de 2021
Editada: Stephen23 el 5 de Mayo de 2021
"if X is positive it must give 10, If X is negative it must give 5, If X is zero, it must give 0."
X = randi([-3,3],1,9) % random data
X = 1×9
0 -3 0 1 2 -2 3 -3 0
V = [5,0,10];
Z = V(2+sign(X))
Z = 1×9
0 5 0 10 10 5 10 5 0
  1 comentario
NN
NN el 5 de Mayo de 2021
Thank you very much, i used this expression in an optimisation problem and i got this error
An error occurred while running the simulation and the simulation was terminated
Caused by:
  • sign

Iniciar sesión para comentar.


Image Analyst
Image Analyst el 5 de Mayo de 2021
Why can't you just simply assign it to a variable and check if that variable is nan, and if it is, assign it to zero?
result = (sqrt((0).^2)./0+1)/2.*(10-5) + 5;
if isnan(result)
result = 0;
end
  1 comentario
Walter Roberson
Walter Roberson el 6 de Mayo de 2021
Because the context is Problem Based Optimization, which does not support if or isnan() and only permits comparisons as part of constraints.

Iniciar sesión para comentar.


Walter Roberson
Walter Roberson el 6 de Mayo de 2021
The following is not exactly right:
M = optimvar('M', 1, 5)
costa = 5
costb = 10
delta = eps(realmin)
part1a = (M - sqrt(M.^2))/2
part1b = part1a./(part1a - delta)
part2a = (M + sqrt(M.^2))/2
part2b = part2a./(part2a + delta)
cost = part1b * costa + part2b * costb
Mathematically it is wrong at exactly two points, M = -eps(realmin) and M = +eps(realmin) . For those two points, the output should be costa and costb respectively, but instead the formula mathematically gives costa/2 and costb/2 at those two points instead.
In practice, though, for values sufficiently close to +/- realmin, numeric evaluation might return costa+costb and for values sufficiently clost to eps(realmin) numeric evaluation might return 0 instead of costa or costb .
The exact result in a range close to +/- realmin is going to depend on the exact order of evaluation, which is not something that we have control over; optimization could potentially re-arrange the evaluation.
This code has been constructed so that it should never return NaN.
How important is it for your purposes that the values must be correct near +/- realmin, given that it is designed to return 0 for 0 exactly?
  4 comentarios
NN
NN el 6 de Mayo de 2021
I got this,
An error occurred while running the simulation and the simulation was terminated
Caused by:
  • SOLVE requires an initial point structure to solve a nonlinear problem.
Walter Roberson
Walter Roberson el 6 de Mayo de 2021
Example. This needs to be upgraded to have Costb passed in as well, but your scripts and the Simulink model currently only pass in a single cost vector.
function [Pgrid,Pbatt,Ebatt] = battSolarOptimize(N,dt,Ppv,Pload,Einit,Cost,FinalWeight,batteryMinMax)
% Minimize the cost of power from the grid while meeting load with power
% from PV, battery and grid
prob = optimproblem;
% Decision variables
PgridV = optimvar('PgridV',N);
PbattV = optimvar('PbattV',N,'LowerBound',batteryMinMax.Pmin,'UpperBound',batteryMinMax.Pmax);
EbattV = optimvar('EbattV',N,'LowerBound',batteryMinMax.Emin,'UpperBound',batteryMinMax.Emax);
% Minimize cost of electricity from the grid
prob.ObjectiveSense = 'minimize';
%{
prob.Objective = dt*Cost'*PgridV - FinalWeight*EbattV(N);
%}
Costa = Cost(:,1);
Costb = Cost(:,end) + randn(size(Costa))/20;
r = 200;
%Cost = (PbattV<=r).*Costa+ (~PbattV>=r).*Costb;
Cost = fcn2optimexpr(@(PV) (PV < r) .* Costa + (PV > r) .* Costb, PbattV);
%P1 = dt*Cost'*PbattV;
%P2 = dt*Cost'*PbattV;
P = dt*Cost'*PbattV;
prob.Objective = dt*Cost'*PgridV - FinalWeight*EbattV(N);
% Power input/output to battery
prob.Constraints.energyBalance = optimconstr(N);
prob.Constraints.energyBalance(1) = EbattV(1) == Einit;
prob.Constraints.energyBalance(2:N) = EbattV(2:N) == EbattV(1:N-1) - PbattV(1:N-1)*dt;
% Satisfy power load with power from PV, grid and battery
prob.Constraints.loadBalance = Ppv + PgridV + PbattV == Pload;
x0.PgridV = ones(1,N);
x0.PbattV = batteryMinMax.Pmin * ones(1,N);
x0.EbattV = batteryMinMax.Emin * ones(1,N);
% Solve the linear program
options = optimoptions(prob.optimoptions, 'Display', 'iter', 'MaxFunctionEvaluations', 1e7, 'MaxIterations', 1024 );
[values,~,exitflag] = solve(prob, x0, 'Options', options);
% Parse optmization results
if exitflag <= 0
fprintf('warning: ran into iteration or function evaluation limit!\n');
end
Pgrid = values.PgridV;
Pbatt = values.PbattV;
Ebatt = values.EbattV;

Iniciar sesión para comentar.


Matt J
Matt J el 6 de Mayo de 2021
Editada: Matt J el 6 de Mayo de 2021
Here's a way you can do it by adding some additional binary variables and linear constraints. It requires that x be bounded to the interval [-1,1]. You can easily introduce a variable z=A*x+B if you need a variable that spans a different range.
x=optimvar('x','LowerBound',-1,'UpperBound',+1);
b1=optimvar('b1','LowerBound',0,'UpperBound',1,'type','integer'); %Binary variables
b2=optimvar('b2','LowerBound',0,'UpperBound',1,'type','integer');
%%EDITED
con1(1)= b1>=x+eps(0); % b1 "ON" when x>=0
con2(1)= b1<=x+1; % b1 "OFF when x<0
con1(2)= b2>=x; % b2 "ON" when x>0
con2(2)= b2<=x+1-eps(1) % b2 "OFF when x<=0
y = 5*(1 + (b1+b2)/2 -3*(b1-b2)/2);
% x>0 ==> b1=b2=1 ==> y=10
% x<0 ==> b1=b2=0 ==> y=5
% x=0 ==> b1=1, b2=0 ==> y=0
  3 comentarios
Matt J
Matt J el 6 de Mayo de 2021
Hmmm. I wonder why...
Walter Roberson
Walter Roberson el 7 de Mayo de 2021
Each constraint is structed by constraint type (same for all elements in the constraint), and two pieces of data indicating what the constraint is operating on.
I do not know why they choose to implement that way..

Iniciar sesión para comentar.

Categorías

Más información sobre Simulink Real-Time en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by