Build model detection after features extraction
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Ilan Moshe
el 10 de Mayo de 2021
Respondida: Manas Meena
el 13 de Mayo de 2021
Hello,
I'm trying to code a nose detection function from a IR video.
I extracted 2 frames from the video and foud the features and compared between them.
ref_img = imread('frame_1.png');
ref_img_gray=rgb2gray(ref_img);
ref_pts=detectSURFFeatures(ref_img_gray);
[ref_features,ref_validPts]=extractFeatures(ref_img_gray,ref_pts);
figure; imshow(ref_img);
hold on; plot(ref_pts.selectStrongest(50));
image=imread('frame_50.png');
I=rgb2gray(image);
I_pts=detectSURFFeatures(I);
[I_features,I_validPts]=extractFeatures(I,I_pts);
figure;imshow(image);
hold on; plot(I_pts.selectStrongest(50));
index_pairs=matchFeatures(ref_features,I_features);
ref_matched_pts=ref_validPts(index_pairs(:,1)).Location;
I_matched_pts=I_validPts(index_pairs(:,2)).Location;
close all
figure,showMatchedFeatures(image,ref_img,I_matched_pts,ref_matched_pts);
Here the figure obtained :
What I have to do as a next step ? We can see from the figure that we got the 2 nostrils as features, so how to train a model a got a function that tracks the region for all the frames ?
thank you
0 comentarios
Respuesta aceptada
Manas Meena
el 13 de Mayo de 2021
After SURF feature detection you can select the strongest points of interest (eg. nostrils) and the use the vision.PointTracker function to track these selected points in the video.
0 comentarios
Más respuestas (0)
Ver también
Categorías
Más información sobre Computer Vision Toolbox en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!