help me --> Taylor series cos(x)

25 visualizaciones (últimos 30 días)
justlikethat
justlikethat el 12 de Mayo de 2021
Editada: Jan el 8 de Dic. de 2022
cos(x) The value of can be represented by the following series.
--> cos(x) = 1 - 1-x^2/2!+x^4/4!-x^6/6! + . . . .
1. Write a mycos function that uses the above series to obtain the value of cos(x).
2. For the difference between the value of cos(2) and mycos(2) provided in Matlab to be 0.001 or less,
Write a code to determine the minimum number of terms of the critical series.
3. Configure the maximum number of iterations to be less than 10.
I'd like to know the matlab code for this problem. Please help me.
My English may be poor and my grammar may be wrong.
function cos(x) = mycos(x,n)
  12 comentarios
Ayoub
Ayoub el 7 de Dic. de 2022
Cos(x)=sum (-1)^(k*2^2k)/(2k!) Sum[k n] K=0
Jan
Jan el 8 de Dic. de 2022
@Ayoub: Please open a new thread for a new question. It is not clear, what you are asking for or how we can help you.

Iniciar sesión para comentar.

Respuesta aceptada

Jan
Jan el 14 de Mayo de 2021
Editada: Jan el 8 de Dic. de 2022
Please read the getting started chapters of the documentation and see Matlab's Onramp tutorial.
Then split the question into parts and solve them one by one.
  1. "Write a mycos function"
function y = mycos(x)
end
2. "above series to obtain the value of cos(x)"
function y = mycos(x)
y = 1 - x^2 / factorial(2) + x^4 / factorial(4) - x^6 / factorial(6);
end
This should be expanded in a loop:
function y = mycos(x)
y = 0;
for k = 0:10
y = y + (-1)^k * x^(2*k) / factiorial(2*k);
end
end
But why stop at k==10 oder anyother specific value?
"value of cos(2) and mycos(2) provided in Matlab to be 0.001 or less"
function [y, k] = mycos_2()
realY = cos(2);
y = 0;
k = 0;
while abs(y - realY) > 0.001
y = y + (-1)^k * x^(2*k) / factorial(2*k);
k = k + 1;
end
end
"Configure the maximum number of iterations to be less than 10."
function [y, k] = mycos_2()
realY = cos(2);
y = 0;
k = 0;
while abs(y - realY) > 0.001 && k < 10
% ^^^^^^^^^
y = y + (-1)^k * x^(2*k) / factorial(2*k);
k = k + 1;
end
end
Fine. But without reading the documentation and to understand how Matlab works, such a solution is completely useless. Do you see it? This wastes your time only.
  2 comentarios
justlikethat
justlikethat el 14 de Mayo de 2021
Editada: justlikethat el 15 de Mayo de 2021
I'm trying to run this code. I changed mycos_2() to mycos(x)
Is this right?
And I don't understand this part --> [y, k]
why did you write it like this?
lastly, I made ' ( y = y + (-1)^k * x^(2*k) / factiorial(2*k);) ' like this.
--> y = (-1)^(k-1)*x^((k-1)*2/factorial((k-1)*2);
What's the difference?
Jan
Jan el 19 de Mayo de 2021
"[y, k]" is the output of the function. So the caller can know, how many iterations have been needed.
It does not matter, if you run a loop from 0 to n-1 and use k as value, or if the loop goes from 1 to n and k-1 is used. Both methods produce the same numbers.

Iniciar sesión para comentar.

Más respuestas (1)

Mahaveer Singh
Mahaveer Singh el 19 de Mayo de 2021
Editada: Mahaveer Singh el 19 de Mayo de 2021
% n is required length of series.Give initial value of n as your imagination to speed up of %calculation.
function y = mycos(x,n)
y = 0;
for i= 0:2:2*n
y = y + ((-1)^(i/2)) *(x^(i)) / factiorial(i);
end
end
while y-cos(x)>0.001
n=n+1;
y=mycos(x,n);
end

Categorías

Más información sobre Parallel Computing Fundamentals en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by