Classification Learner App Iterations

5 visualizaciones (últimos 30 días)
KF
KF el 21 de Mayo de 2021
Respondida: Prince Kumar el 7 de Abr. de 2022
Hi,
I am performing supervised learning on a binary data set of 20 samples. I am doing holdout variation, training on 80% and testing on 20% of the data. As 20% of the test data is only 4 samples, the accuracy I get out each time I run a classifier varies wildly. I have found a way to manually add repeat iterations by generating the code from the app and adding it in (I am currently using 1000 iterations). However, I would like to be able to use the optimisable classifiers found in the app, but they would only be valuable if I can find a way to add repeat iterations using different holdout samples for each run. Any help would be much appreciated!

Respuestas (1)

Prince Kumar
Prince Kumar el 7 de Abr. de 2022
Hi,
Your training sample is too small for the model to learn anything significant. If you train your model for large interations, then your model will overfit.
Hope this helps!

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by