3-Dimensional Matrix and Standard Deviation

4 visualizaciones (últimos 30 días)
Sami Case
Sami Case el 23 de Mayo de 2021
Comentada: Sami Case el 25 de Mayo de 2021
Hi there,
I have a 3-Dimensional matrix (sizeX, sizeY, 700 Frames). I would like to group the "frames" in groups of 10, so that I can take the standard deviation of each of these groups of frames. E.g. -- Since I have 700 frames (z values), I would like to take the standard deviation of 1:10, then 11:20, then 21:30. For mean, I could just bin them in groups of ten (using for loop and mean function) and get my 70 values. But for standard deviation, I'm not sure how to do this.
  2 comentarios
Sami Case
Sami Case el 23 de Mayo de 2021
**Similar to the Grouped-Z Project function in ImageJ where you can do Standard Deviation of your data with a group size of 10.
Sami Case
Sami Case el 25 de Mayo de 2021
See DGM’s comment below for answer help.

Iniciar sesión para comentar.

Respuesta aceptada

Sulaymon Eshkabilov
Sulaymon Eshkabilov el 23 de Mayo de 2021
Hi,
Here is a relatively simple solution for the standard deviation calculation:
D = DATA; % DATA of size: X-by-Y-Zs, where Zs = 1:700;
IND = 1:10:700;
for ii=2:numel(IND)
S_D(ii-1) = std2(D(:,:,IND(ii-1):IND(ii))); % Standard deviation
M_D(ii-1)=mean2(D(:,:, IND(ii-1):IND(ii))); % Mean values
end
Good luck.
  4 comentarios
Sami Case
Sami Case el 23 de Mayo de 2021
This is still showing a 1x70 vector. My goal it to have a standard deviation from 1-70 for each cell in the matrix. So my matrix is 160-by-160 and the z is 700. I would like to have a standard deviation of the cell in column 1, row 1 for every z. And for column 2, row 2 for every z. The output should be 160 by 160 by 70 matrix.
DGM
DGM el 24 de Mayo de 2021
Editada: DGM el 24 de Mayo de 2021
Try this:
D = rand(10,10,100); % random sample data
blocksize = 10; % how many pages to collapse?
npages = size(D,3);
IND = 1:blocksize:npages;
stdpict = zeros(size(D,1),size(D,2),numel(IND));
meanpict = zeros(size(D,1),size(D,2),numel(IND));
for ii=1:numel(IND)
idxrange = IND(ii):(IND(ii)+blocksize-1);
% Standard deviation of block along dim 3
stdpict(:,:,ii) = std(D(:,:,idxrange),0,3);
% Mean of block along dim 3
meanpict(:,:,ii) = sum(D(:,:,idxrange),3)/blocksize;
end
% the indexing will break if npages is not integer-divisible by blocksize
This does operations along dim3 of each block of pages. That sounds like what you're after.
Prior code was also indexing 1:11, 11:21, 21:31, etc, and dropping the last sample block.

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Creating and Concatenating Matrices en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by